cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A200743 Divide integers 1..n into two sets, minimizing the difference of their products. This sequence is the smaller product.

This page as a plain text file.
%I A200743 #54 Jul 15 2023 16:56:55
%S A200743 1,1,2,4,10,24,70,192,576,1890,6300,21600,78624,294840,1140480,
%T A200743 4561920,18849600,79968000,348566400,1559376000,7147140000,
%U A200743 33522128640,160745472000,787652812800,3938264064000,20080974513600,104348244639744,552160113120000,2973491173785600,16286186592000000,90678987245246400
%N A200743 Divide integers 1..n into two sets, minimizing the difference of their products. This sequence is the smaller product.
%H A200743 Max Alekseyev, <a href="/A200743/b200743.txt">Table of n, a(n) for n = 1..140</a> (terms for n=1..35 from Michael S. Branicky)
%F A200743 a(n) = A127180(n) - A200744(n) = A200744(n) - A038667(n) = (A127180(n) - A038667(n)) / 2. - _Max Alekseyev_, Jun 18 2022
%e A200743 For n=1, we put 1 in one set and the other is empty; with the standard convention for empty products, both products are 1.
%e A200743 For n=13, the central pair of divisors of n! are 78975 and 78848. Since neither is divisible by 10, these values cannot be obtained. The next pair of divisors are 79200 = 12*11*10*6*5*2*1 and 78624 = 13*9*8*7*4*3, so a(13) = 78624.
%p A200743 a:= proc(n) local l, ll, g, p, i; l:= [i$i=1..n]; ll:= [i!$i=1..n]; g:= proc(m, j, b) local mm, bb, k; if j=1 then m else mm:= m; bb:= b; for k to 2 while (mm<p) do if j=2 or k=2 or k=1 and ll[j-1]*mm>bb then bb:= max(bb, g(mm, j-1, bb)) fi; mm:= mm*l[j] od; bb fi end; Digits:= 700; p:= ceil(sqrt(ll[n])); g(1, nops(l), 1) end: seq(a(n), n=1..23);  # _Alois P. Heinz_, Nov 22 2011
%t A200743 a[n_] := a[n] = Module[{s, t}, {s, t} = MinimalBy[{#, Complement[Range[n], #]}& /@ Subsets[Range[n]], Abs[Times @@ #[[1]] - Times @@ #[[2]]]&][[1]]; Min[Times @@ s, Times @@ t]];
%t A200743 Table[Print[n, " ", a[n]]; a[n], {n, 1, 25}] (* _Jean-François Alcover_, Nov 03 2020 *)
%o A200743 (Python)
%o A200743 from itertools import combinations
%o A200743 def prod(l):
%o A200743     t=1
%o A200743     for x in l:
%o A200743         t *= x
%o A200743     return t
%o A200743 def a200743(n):
%o A200743     nums = list(range(1,n+1))
%o A200743     widths = combinations(nums,n//2)
%o A200743     dimensions = [(prod(width),prod(x for x in nums if x not in width)) for width in widths]
%o A200743     best = min(dimensions,key=lambda x:max(*x)-min(*x))
%o A200743     return min(best)
%o A200743 # _Christian Perfect_, Feb 04 2015
%o A200743 (Python)
%o A200743 from math import prod, factorial
%o A200743 from itertools import combinations
%o A200743 def A200743(n):
%o A200743     m = factorial(n)
%o A200743     return min((abs((p:=prod(d))-m//p),min(p,m//p)) for l in range(n,n//2,-1) for d in combinations(range(1,n+1),l))[1] # _Chai Wah Wu_, Apr 07 2022
%Y A200743 Cf. A060776, A038667, A127180, A200744.
%K A200743 nonn
%O A200743 1,3
%A A200743 _Franklin T. Adams-Watters_, Nov 21 2011
%E A200743 a(24)-a(30) from _Alois P. Heinz_, Nov 22 2011
%E A200743 a(31) from _Michael S. Branicky_, May 21 2021