cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A200750 Number of partitions of n such that the number of parts and the greatest part are coprime.

This page as a plain text file.
%I A200750 #13 Dec 05 2020 09:37:23
%S A200750 1,2,2,4,4,8,8,14,18,28,32,48,58,82,104,144,178,240,294,386,478,616,
%T A200750 750,958,1172,1476,1808,2262,2752,3418,4144,5096,6168,7532,9056,10998,
%U A200750 13174,15888,18968,22772,27074,32364,38366,45662,54006,64062,75534,89324
%N A200750 Number of partitions of n such that the number of parts and the greatest part are coprime.
%H A200750 Alois P. Heinz, <a href="/A200750/b200750.txt">Table of n, a(n) for n = 1..500</a>
%e A200750 a(5) = 4: [1,1,1,1,1], [1,2,2], [2,3], [5].
%e A200750 a(6) = 8: [1,1,1,1,1,1], [1,1,1,1,2], [2,2,2], [1,1,1,3], [3,3], [1,1,4], [1,5], [6].
%p A200750 b:= proc(n, j, t) option remember;
%p A200750       add(b(n-i, i, t+1), i=j..iquo(n, 2))+`if`(igcd(t, n)=1, 1, 0)
%p A200750     end:
%p A200750 a:= n-> b(n, 1, 1):
%p A200750 seq(a(n), n=1..60);
%t A200750 b[n_, j_, t_] := b[n, j, t] = Sum[b[n-i, i, t+1], {i, j, Quotient[n, 2]}] + If[GCD[t, n] == 1, 1, 0];
%t A200750 a[n_] := b[n, 1, 1];
%t A200750 Array[a, 60] (* _Jean-François Alcover_, Dec 05 2020, after _Alois P. Heinz_ *)
%Y A200750 Cf. A199886.
%K A200750 nonn
%O A200750 1,2
%A A200750 _Alois P. Heinz_, Nov 21 2011