cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A200759 Number of 0..3 arrays x(0..n-1) of n elements with nondecreasing average value.

Original entry on oeis.org

4, 10, 23, 51, 110, 233, 488, 1013, 2088, 4278, 8720, 17695, 35768, 72054, 144717, 289887, 579312, 1155257, 2299426, 4568935, 9064316, 17957296, 35529320, 70213565, 138607340, 273351142, 538591471, 1060310343, 2085784818, 4100099321
Offset: 1

Views

Author

R. H. Hardin, Nov 22 2011

Keywords

Comments

Column 3 of A200763

Examples

			Some solutions for n=8
..0....0....1....0....0....0....0....0....1....0....0....0....0....0....0....0
..0....0....1....3....0....0....2....0....2....0....0....0....0....2....2....0
..0....0....1....3....3....2....1....1....2....3....1....0....1....3....1....0
..0....2....1....2....2....2....1....1....2....3....1....3....2....2....2....3
..0....2....1....2....2....3....1....1....2....2....3....1....1....3....3....1
..0....2....2....2....3....3....2....3....3....3....3....2....3....3....2....2
..1....1....3....2....2....2....2....1....3....2....3....1....2....3....2....1
..3....3....3....2....2....2....2....1....3....2....3....3....2....3....3....1
		

Formula

Empirical: a(n) = 5*a(n-1) -8*a(n-2) +3*a(n-3) +3*a(n-4) -2*a(n-5) +a(n-6) -3*a(n-7) +2*a(n-8) -a(n-9) +a(n-10).
Empirical g.f.: -x*(4-10*x+5*x^2+4*x^3-3*x^4-3*x^6+x^9+2*x^7-x^8) / ( (x-1)*(x^3+x^2+x-1)*(x^6-x^5+2*x^4-x^3-2*x^2+3*x-1) ). - R. J. Mathar, Nov 22 2011

A200760 Number of 0..4 arrays x(0..n-1) of n elements with nondecreasing average value.

Original entry on oeis.org

5, 15, 42, 113, 297, 767, 1957, 4947, 12419, 31006, 77067, 190855, 471214, 1160452, 2851731, 6995305, 17133294, 41909286, 102399361, 249960246, 609662706, 1485944622, 3619527395, 8811972483, 21443566290, 52161461882, 126839318918
Offset: 1

Views

Author

R. H. Hardin Nov 22 2011

Keywords

Comments

Column 4 of A200763

Examples

			Some solutions for n=8
..0....0....0....0....0....0....0....0....1....0....1....0....1....1....0....0
..0....1....0....2....2....1....0....1....1....2....1....0....1....1....4....0
..0....2....0....1....2....1....3....2....4....1....1....0....2....2....4....4
..2....2....1....2....3....1....1....1....3....1....4....4....4....3....3....2
..2....2....3....4....2....2....3....2....3....1....2....4....2....3....3....3
..3....3....2....2....4....2....3....4....3....2....4....2....2....4....3....2
..2....2....4....3....3....4....3....3....4....2....4....2....2....3....3....3
..4....2....4....2....4....2....2....4....4....2....3....4....4....3....3....3
		

Formula

Empirical: a(n) = 18*a(n-1) -147*a(n-2) +718*a(n-3) -2324*a(n-4) +5207*a(n-5) -8163*a(n-6) +8783*a(n-7) -5967*a(n-8) +1216*a(n-9) +4359*a(n-10) -12032*a(n-11) +21061*a(n-12) -25355*a(n-13) +19242*a(n-14) -4565*a(n-15) -10182*a(n-16) +15832*a(n-17) -9350*a(n-18) -2623*a(n-19) +9836*a(n-20) -8451*a(n-21) +2304*a(n-22) +2965*a(n-23) -4284*a(n-24) +2384*a(n-25) -124*a(n-26) -752*a(n-27) +543*a(n-28) -103*a(n-29) -133*a(n-30) +128*a(n-31) -53*a(n-32) +19*a(n-33) -12*a(n-34) +3*a(n-35) +9*a(n-36) -6*a(n-37) -a(n-38) +2*a(n-39) -a(n-41)

A200761 Number of 0..5 arrays x(0..n-1) of n elements with nondecreasing average value.

Original entry on oeis.org

6, 21, 69, 219, 679, 2070, 6235, 18608, 55148, 162532, 476857, 1393903, 4061917, 11805549, 34234268, 99079243, 286255570, 825770674, 2378862529, 6844519217, 19671211354, 56477811098, 162002541976, 464298401040, 1329640943422
Offset: 1

Views

Author

R. H. Hardin Nov 22 2011

Keywords

Comments

Column 5 of A200763

Examples

			Some solutions for n=8
..0....1....0....0....1....0....0....0....0....0....1....1....0....0....0....0
..0....1....1....2....1....2....1....2....0....3....1....1....1....1....0....0
..1....1....2....1....5....2....1....1....1....2....4....2....1....2....0....0
..1....1....3....5....4....2....2....2....4....4....5....2....1....2....3....4
..5....1....5....2....3....3....4....3....2....5....3....3....4....2....4....5
..2....4....5....3....5....3....4....4....3....3....3....3....2....5....2....2
..3....5....3....4....5....2....2....3....4....4....5....5....3....2....3....4
..3....3....4....3....5....2....3....5....3....3....4....4....3....2....3....3
		

A200762 Number of 0..6 arrays x(0..n-1) of n elements with nondecreasing average value.

Original entry on oeis.org

7, 28, 106, 388, 1387, 4874, 16919, 58198, 198807, 675372, 2283994, 7695280, 25845198, 86568033, 289279804, 964690182, 3211220933, 10672137362, 35416362298, 117378654202, 388561273645, 1284874248757, 4244554964082
Offset: 1

Views

Author

R. H. Hardin Nov 22 2011

Keywords

Comments

Column 6 of A200763

Examples

			Some solutions for n=8
..0....0....0....1....0....1....0....0....0....0....1....0....3....0....0....0
..0....1....1....2....1....1....0....2....0....0....2....0....3....4....0....0
..4....3....1....4....5....2....4....1....5....3....2....2....4....2....6....5
..2....2....1....5....4....2....5....2....6....5....3....3....4....2....2....4
..6....3....3....4....3....6....5....4....4....3....2....3....6....2....2....3
..5....4....6....6....3....6....3....3....3....5....3....3....5....4....6....4
..4....5....3....6....5....3....3....2....4....6....5....3....6....4....3....6
..6....4....5....6....3....5....6....2....6....6....3....2....5....6....4....4
		

A200764 Number of 0..n arrays x(0..3) of 4 elements with nondecreasing average value.

Original entry on oeis.org

5, 19, 51, 113, 219, 388, 638, 995, 1483, 2133, 2975, 4047, 5383, 7028, 9022, 11415, 14253, 17593, 21485, 25993, 31173, 37094, 43818, 51421, 59969, 69545, 80221, 92085, 105215, 119706, 135640, 153119, 172231, 193083, 215769, 240403, 267083, 295930
Offset: 1

Views

Author

R. H. Hardin, Nov 22 2011

Keywords

Comments

a(n) is the number of integer lattice points in n*C where C is the polytope in R^4 with vertices [0, 0, 0, 0], [0, 0, 0, 1], [0, 0, 1, 1], [0, 0, 1, 1/3], [0, 1, 1, 1], [0, 1, 1, 2/3], [0, 1, 1/2, 1], [0, 1, 1/2, 1/2], [1, 1, 1, 1], and thus is an Ehrhart quasi-polynomial. - Robert Israel, May 30 2025

Examples

			Some solutions for n=8
..0....5....0....2....0....1....2....2....3....3....0....0....2....0....2....1
..4....6....1....4....0....4....3....5....4....3....5....2....4....1....7....1
..3....8....1....3....5....7....4....8....4....7....4....7....4....5....7....6
..3....7....1....5....7....4....7....7....7....6....4....7....4....5....6....3
		

Crossrefs

Row 4 of A200763.

Formula

Empirical: a(n) = 2*a(n-1) +a(n-2) -3*a(n-3) -a(n-4) +a(n-5) +3*a(n-6) -a(n-7) -2*a(n-8) +a(n-9).
Empirical g.f.: -x*(5+9*x+8*x^2+7*x^3+4*x^4+4*x^5-x^6-2*x^7+x^8) / ( (1+x+x^2)*(1+x)^2*(x-1)^5 ). - R. J. Mathar, Nov 22 2011

A200765 Number of 0..n arrays x(0..4) of 5 elements with nondecreasing average value.

Original entry on oeis.org

6, 32, 110, 297, 679, 1387, 2583, 4500, 7410, 11669, 17687, 25980, 37111, 51787, 70763, 94950, 125323, 163042, 209312, 265570, 333296, 414214, 510106, 623032, 755080, 908676, 1086266, 1290643, 1524638, 1791469, 2094349, 2436949, 2822922
Offset: 1

Views

Author

R. H. Hardin, Nov 22 2011

Keywords

Comments

Row 5 of A200763

Examples

			Some solutions for n=8
..1....0....0....2....0....1....1....0....0....0....0....2....2....5....0....1
..5....2....0....2....0....1....1....4....1....3....8....4....3....7....2....6
..7....1....2....2....6....1....3....5....4....4....8....6....7....7....8....7
..5....3....8....3....3....8....3....5....3....4....8....8....4....8....7....5
..8....7....3....3....8....4....8....8....8....8....6....8....4....7....5....5
		

Formula

Empirical: a(n) = a(n-1) +2*a(n-2) -3*a(n-4) -3*a(n-5) +3*a(n-6) +3*a(n-7) +a(n-8) -3*a(n-9) -3*a(n-10) +a(n-11) +3*a(n-12) +3*a(n-13) -3*a(n-14) -3*a(n-15) +2*a(n-17) +a(n-18) -a(n-19)
Empirical g.f.: -x*(-6 -26*x -66*x^2 -123*x^3 -180*x^4 -228*x^5 -246*x^6 -250*x^7 -240*x^8 -222*x^9 -184*x^10 -129*x^11 -69*x^12 -21*x^13 -2*x^14 -x^15 -2*x^16 -x^17+x^18) / ( (x^2+1) *(x^4+1) *(1+x+x^2)^2 *(1+x)^3 *(x-1)^6 ). - R. J. Mathar, Nov 22 2011

A200766 Number of 0..n arrays x(0..5) of 6 elements with nondecreasing average value.

Original entry on oeis.org

7, 53, 233, 767, 2070, 4874, 10283, 20012, 36412, 62780, 103412, 164018, 251615, 375282, 545834, 776713, 1083692, 1485962, 2005409, 2668396, 3504549, 4548781, 5840076, 7423854, 9349952, 11676207, 14465536, 17789881, 21727318, 26366500
Offset: 1

Views

Author

R. H. Hardin Nov 22 2011

Keywords

Comments

Row 6 of A200763

Examples

			Some solutions for n=8
..0....0....2....0....0....0....1....1....0....0....0....0....1....0....0....0
..1....2....4....0....0....5....6....4....3....2....2....1....3....2....0....5
..5....2....3....1....1....7....8....6....5....6....5....5....7....5....0....6
..2....4....5....6....1....7....7....5....5....4....7....3....4....6....4....6
..2....5....4....3....1....6....8....7....7....7....6....8....4....5....1....5
..6....7....4....8....3....8....8....8....5....5....5....8....5....6....7....7
		

Formula

Empirical: a(n) = a(n-1) +a(n-2) +a(n-3) -2*a(n-4) -3*a(n-5) +2*a(n-6) +2*a(n-7) +4*a(n-8) -5*a(n-9) -4*a(n-10) -a(n-11) +5*a(n-12) +7*a(n-13) -5*a(n-14) -3*a(n-15) -6*a(n-16) +6*a(n-17) +4*a(n-18) +a(n-19) -a(n-20) -7*a(n-21) +2*a(n-22) -2*a(n-23) +7*a(n-24) +a(n-25) -a(n-26) -4*a(n-27) -6*a(n-28) +6*a(n-29) +3*a(n-30) +5*a(n-31) -7*a(n-32) -5*a(n-33) +a(n-34) +4*a(n-35) +5*a(n-36) -4*a(n-37) -2*a(n-38) -2*a(n-39) +3*a(n-40) +2*a(n-41) -a(n-42) -a(n-43) -a(n-44) +a(n-45)

A200767 Number of 0..n arrays x(0..6) of 7 elements with nondecreasing average value.

Original entry on oeis.org

8, 87, 488, 1957, 6235, 16919, 40437, 87914, 176767, 333702, 597390, 1023102, 1685581, 2687038, 4160030, 6277804, 9258994, 13381323, 18984366, 26491458, 36409891, 49357180, 66063593, 87404568, 114396287, 148245212, 190335373
Offset: 1

Views

Author

R. H. Hardin Nov 22 2011

Keywords

Comments

Row 7 of A200763

Examples

			Some solutions for n=8
..0....1....0....0....0....0....1....2....1....0....0....1....0....0....0....0
..7....6....0....1....0....0....3....4....1....3....0....3....2....4....0....2
..4....8....0....4....5....6....8....4....1....2....7....4....3....3....6....4
..6....5....0....8....3....7....7....4....5....6....7....8....7....5....4....7
..8....7....5....4....3....6....7....8....3....6....6....7....6....7....4....8
..5....7....1....5....4....8....7....5....6....7....7....6....6....4....4....7
..7....8....3....8....4....6....6....8....6....8....8....7....7....4....3....7
		
Showing 1-8 of 8 results.