A200786 Number of 0..n arrays x(0..3) of 4 elements without any two consecutive increases.
16, 75, 225, 530, 1071, 1946, 3270, 5175, 7810, 11341, 15951, 21840, 29225, 38340, 49436, 62781, 78660, 97375, 119245, 144606, 173811, 207230, 245250, 288275, 336726, 391041, 451675, 519100, 593805, 676296, 767096, 866745, 975800, 1094835
Offset: 1
Keywords
Examples
Some solutions for n=3 ..0....1....0....3....2....3....3....2....3....1....0....1....0....3....1....0 ..0....3....3....1....2....3....2....0....3....3....3....2....0....2....1....2 ..3....2....3....1....1....0....2....3....3....1....1....1....2....1....3....1 ..1....2....1....2....3....0....1....0....3....2....2....2....2....2....1....1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..140
- A. Burstein and T. Mansour, Words restricted by 3-letter generalized multipermutation patterns, Annals. Combin., 7 (2003), 1-14. See Th. 3.13.
Formula
Empirical: a(n) = (17/24)*n^4 + (43/12)*n^3 + (151/24)*n^2 + (53/12)*n + 1.
Conjectures from Colin Barker, Oct 15 2017: (Start)
G.f.: x*(16 - 5*x + 10*x^2 - 5*x^3 + x^4) / (1 - x)^5.
a(n) = (24 + 106*n + 151*n^2 + 86*n^3 + 17*n^4) / 24.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) for n>5.
(End)
Comments