A200787 Number of 0..n arrays x(0..4) of 5 elements without any two consecutive increases.
32, 216, 840, 2425, 5796, 12152, 23136, 40905, 68200, 108416, 165672, 244881, 351820, 493200, 676736, 911217, 1206576, 1573960, 2025800, 2575881, 3239412, 4033096, 4975200, 6085625, 7385976, 8899632, 10651816, 12669665, 14982300
Offset: 1
Keywords
Examples
Some solutions for n=3 ..2....1....3....2....2....3....1....3....1....1....2....1....0....1....2....0 ..0....0....3....3....1....2....3....1....3....2....0....0....3....3....2....0 ..0....1....1....3....3....1....3....1....0....0....0....2....3....2....3....0 ..3....1....1....1....1....0....3....2....3....3....3....2....1....1....0....0 ..0....1....1....0....2....3....3....1....1....0....1....0....3....1....2....3
Links
- R. H. Hardin, Table of n, a(n) for n = 1..139
Formula
Empirical: a(n) = (7/12)*n^5 + (47/12)*n^4 + (39/4)*n^3 + (133/12)*n^2 + (17/3)*n + 1.
Conjectures from Colin Barker, Oct 15 2017: (Start)
G.f.: x*(32 + 24*x + 24*x^2 - 15*x^3 + 6*x^4 - x^5) / (1 - x)^6.
a(n) = (1 + n)^2*(12 + 44*n + 33*n^2 + 7*n^3) / 12 .
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6) for n>6.
(End)
Comments