A200788 Number of 0..n arrays x(0..5) of 6 elements without any two consecutive increases.
64, 622, 3136, 11100, 31395, 75992, 164004, 324087, 597190, 1039654, 1726660, 2756026, 4252353, 6371520, 9305528, 13287693, 18598188, 25569934, 34594840, 46130392, 60706591, 78933240, 101507580, 129222275, 162973746, 203770854
Offset: 1
Keywords
Examples
Some solutions for n=3 ..2....3....3....2....3....2....1....1....3....3....1....1....2....3....2....1 ..3....2....1....3....0....0....3....0....0....3....3....1....2....3....2....1 ..0....3....3....3....0....1....3....0....1....0....3....3....1....0....2....1 ..3....3....2....3....3....1....0....2....1....2....0....0....0....2....2....2 ..3....1....2....3....0....1....1....1....3....0....2....0....3....2....1....2 ..3....3....1....2....0....2....1....2....3....0....2....2....1....2....2....3
Links
- R. H. Hardin, Table of n, a(n) for n = 1..138
Formula
Empirical: a(n) = (349/720)*n^6 + (321/80)*n^5 + (1883/144)*n^4 + (1013/48)*n^3 + (3139/180)*n^2 + (413/60)*n + 1.
Conjectures from Colin Barker, Oct 15 2017: (Start)
G.f.: x*(64 + 174*x + 126*x^2 - 30*x^3 + 21*x^4 - 7*x^5 + x^6) / (1 - x)^7.
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7) for n>7.
(End)
Comments