cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A200837 Number of 0..7 arrays x(0..n+1) of n+2 elements without any two consecutive increases or two consecutive decreases.

Original entry on oeis.org

400, 2444, 15128, 93472, 577660, 3570086, 22063924, 136360286, 842739040, 5208328180, 32188710564, 198933910242, 1229459024390, 7598350081290, 46959616234372, 290221631449614, 1793638920327662, 11085116434803236
Offset: 1

Views

Author

R. H. Hardin, Nov 23 2011

Keywords

Comments

Column 7 of A200838.

Examples

			Some solutions for n=3
..7....3....6....6....2....3....0....3....7....0....2....1....1....0....3....0
..2....3....5....0....3....5....4....2....1....5....0....0....7....0....2....3
..7....6....6....4....2....5....2....7....4....4....4....5....3....4....2....3
..4....1....6....0....5....5....5....1....2....7....0....0....4....2....6....0
..7....5....5....5....2....3....0....1....4....6....0....4....4....4....5....0
		

Formula

Empirical: a(n) = 8*a(n-1) -12*a(n-2) +6*a(n-3) -10*a(n-4) +12*a(n-5) -11*a(n-6) +11*a(n-7) -6*a(n-8) +3*a(n-9) -a(n-10).
Empirical g.f.: 2*x*(200 - 378*x + 188*x^2 - 312*x^3 + 378*x^4 - 329*x^5 + 338*x^6 - 183*x^7 + 92*x^8 - 32*x^9) / (1 - 8*x + 12*x^2 - 6*x^3 + 10*x^4 - 12*x^5 + 11*x^6 - 11*x^7 + 6*x^8 - 3*x^9 + x^10). - Colin Barker, Oct 16 2017