cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A200833 Number of 0..3 arrays x(0..n+1) of n+2 elements without any two consecutive increases or two consecutive decreases.

Original entry on oeis.org

56, 194, 676, 2356, 8210, 28610, 99700, 347434, 1210736, 4219166, 14702926, 51236674, 178549274, 622207508, 2168265232, 7555958512, 26330961818, 91757987972, 319757721532, 1114289913490, 3883071237050, 13531704854780
Offset: 1

Views

Author

R. H. Hardin Nov 23 2011

Keywords

Comments

Column 3 of A200838.

Examples

			Some solutions for n=3
..2....3....2....1....2....3....2....1....1....2....3....3....2....1....2....2
..3....2....3....2....0....3....3....2....2....0....3....1....1....0....3....2
..0....2....0....2....3....0....3....0....0....0....0....2....1....0....1....2
..3....1....3....3....3....2....0....0....0....3....2....2....3....0....2....2
..3....1....2....0....3....2....0....3....2....0....0....2....2....2....1....0
		

Formula

Empirical: a(n) = 4*a(n-1) -2*a(n-2) +a(n-3) -a(n-4).
Empirical g.f.: 2*x*(28 - 15*x + 6*x^2 - 8*x^3) / (1 - 4*x + 2*x^2 - x^3 + x^4). - Colin Barker, Oct 14 2017

A200834 Number of 0..4 arrays x(0..n+1) of n+2 elements without any two consecutive increases or two consecutive decreases.

Original entry on oeis.org

105, 435, 1817, 7587, 31677, 132263, 552247, 2305835, 9627715, 40199277, 167846875, 700822891, 2926195229, 12217949255, 51014464969, 213004292437, 889371840403, 3713456951747, 15505058633553, 64739364520389
Offset: 1

Views

Author

R. H. Hardin Nov 23 2011

Keywords

Comments

Column 4 of A200838.

Examples

			Some solutions for n=3
..2....4....1....2....3....1....1....1....0....2....4....2....0....1....1....3
..2....3....4....0....0....4....0....2....4....2....4....4....4....1....4....1
..2....3....4....0....2....3....1....2....3....2....1....4....3....3....3....1
..3....4....0....4....1....4....0....1....4....2....3....1....4....2....3....1
..3....3....1....0....2....2....0....2....3....0....1....2....2....4....4....0
		

Formula

Empirical: a(n) = 5*a(n-1) -4*a(n-2) +3*a(n-3) -3*a(n-4) +a(n-5) -a(n-6).
Empirical g.f.: x*(105 - 90*x + 62*x^2 - 73*x^3 + 20*x^4 - 25*x^5) / ((1 - x)*(1 - 4*x - 3*x^3 - x^5)). - Colin Barker, Oct 14 2017

A200835 Number of 0..5 arrays x(0..n+1) of n+2 elements without any two consecutive increases or two consecutive decreases.

Original entry on oeis.org

176, 846, 4108, 19930, 96690, 469116, 2276028, 11042700, 53576350, 259938722, 1261156090, 6118806300, 29686880836, 144033141554, 698811908924, 3390456382404, 16449625906804, 79809371351400, 387214626739458
Offset: 1

Views

Author

R. H. Hardin Nov 23 2011

Keywords

Comments

Column 5 of A200838.

Examples

			Some solutions for n=3
..3....5....0....4....2....3....2....5....3....1....2....0....0....4....1....3
..3....4....3....1....1....5....0....1....0....1....3....5....2....5....4....4
..0....4....0....1....5....3....4....2....5....1....3....4....1....0....4....0
..0....0....2....4....0....3....2....2....4....3....1....5....1....4....4....0
..1....1....1....2....0....5....3....2....4....3....1....5....2....0....0....5
		

Formula

Empirical: a(n) = 6*a(n-1) -6*a(n-2) +3*a(n-3) -5*a(n-4) +3*a(n-5) -2*a(n-6) +a(n-7).
Empirical g.f.: 2*x*(88 - 105*x + 44*x^2 - 85*x^3 + 50*x^4 - 33*x^5 + 18*x^6) / (1 - 6*x + 6*x^2 - 3*x^3 + 5*x^4 - 3*x^5 + 2*x^6 - x^7). - Colin Barker, Oct 14 2017

A200836 Number of 0..6 arrays x(0..n+1) of n+2 elements without any two consecutive increases or two consecutive decreases.

Original entry on oeis.org

273, 1491, 8239, 45465, 250913, 1384813, 7642875, 42181611, 232803603, 1284861277, 7091249941, 39137163521, 216001069269, 1192126810953, 6579441195743, 36312451033865, 200411259993515, 1106085433196691
Offset: 1

Views

Author

R. H. Hardin, Nov 23 2011

Keywords

Comments

Column 6 of A200838.

Examples

			Some solutions for n=3
..2....4....4....4....0....1....2....4....2....5....4....4....5....2....1....3
..1....3....6....3....3....5....5....3....4....2....3....0....0....1....6....5
..4....4....3....6....1....0....4....3....4....2....3....0....1....6....3....0
..3....2....6....2....5....0....4....1....3....2....6....6....0....0....3....3
..4....5....3....5....4....1....6....3....5....3....4....3....6....5....6....3
		

Formula

Empirical: a(n) = 7*a(n-1) -9*a(n-2) +6*a(n-3) -9*a(n-4) +7*a(n-5) -7*a(n-6) +5*a(n-7) -2*a(n-8) +a(n-9).
Empirical g.f.: x*(273 - 420*x + 259*x^2 - 427*x^3 + 320*x^4 - 319*x^5 + 236*x^6 - 91*x^7 + 49*x^8) / (1 - 7*x + 9*x^2 - 6*x^3 + 9*x^4 - 7*x^5 + 7*x^6 - 5*x^7 + 2*x^8 - x^9). - Colin Barker, Oct 15 2017

A200837 Number of 0..7 arrays x(0..n+1) of n+2 elements without any two consecutive increases or two consecutive decreases.

Original entry on oeis.org

400, 2444, 15128, 93472, 577660, 3570086, 22063924, 136360286, 842739040, 5208328180, 32188710564, 198933910242, 1229459024390, 7598350081290, 46959616234372, 290221631449614, 1793638920327662, 11085116434803236
Offset: 1

Views

Author

R. H. Hardin, Nov 23 2011

Keywords

Comments

Column 7 of A200838.

Examples

			Some solutions for n=3
..7....3....6....6....2....3....0....3....7....0....2....1....1....0....3....0
..2....3....5....0....3....5....4....2....1....5....0....0....7....0....2....3
..7....6....6....4....2....5....2....7....4....4....4....5....3....4....2....3
..4....1....6....0....5....5....5....1....2....7....0....0....4....2....6....0
..7....5....5....5....2....3....0....1....4....6....0....4....4....4....5....0
		

Formula

Empirical: a(n) = 8*a(n-1) -12*a(n-2) +6*a(n-3) -10*a(n-4) +12*a(n-5) -11*a(n-6) +11*a(n-7) -6*a(n-8) +3*a(n-9) -a(n-10).
Empirical g.f.: 2*x*(200 - 378*x + 188*x^2 - 312*x^3 + 378*x^4 - 329*x^5 + 338*x^6 - 183*x^7 + 92*x^8 - 32*x^9) / (1 - 8*x + 12*x^2 - 6*x^3 + 10*x^4 - 12*x^5 + 11*x^6 - 11*x^7 + 6*x^8 - 3*x^9 + x^10). - Colin Barker, Oct 16 2017

A200839 Number of 0..n arrays x(0..3) of 4 elements without any two consecutive increases or two consecutive decreases.

Original entry on oeis.org

16, 69, 194, 435, 846, 1491, 2444, 3789, 5620, 8041, 11166, 15119, 20034, 26055, 33336, 42041, 52344, 64429, 78490, 94731, 113366, 134619, 158724, 185925, 216476, 250641, 288694, 330919, 377610, 429071, 485616, 547569, 615264, 689045, 769266
Offset: 1

Views

Author

R. H. Hardin Nov 23 2011

Keywords

Comments

Row 2 of A200838.

Examples

			Some solutions for n=3
..3....3....1....1....3....2....2....2....2....0....2....0....2....3....0....1
..1....1....0....1....3....2....3....0....1....0....2....1....3....3....1....2
..1....1....0....3....3....0....1....0....3....2....1....0....0....1....1....2
..2....3....3....1....3....3....2....1....3....0....1....0....3....1....3....0
		

Formula

Empirical: a(n) = (5/12)*n^4 + (19/6)*n^3 + (79/12)*n^2 + (29/6)*n + 1.
Conjectures from Colin Barker, Oct 14 2017: (Start)
G.f.: x*(16 - 11*x + 9*x^2 - 5*x^3 + x^4) / (1 - x)^5.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) for n>5.
(End)

A200840 Number of 0..n arrays x(0..4) of 5 elements without any two consecutive increases or two consecutive decreases.

Original entry on oeis.org

32, 191, 676, 1817, 4108, 8239, 15128, 25953, 42184, 65615, 98396, 143065, 202580, 280351, 380272, 506753, 664752, 859807, 1098068, 1386329, 1732060, 2143439, 2629384, 3199585, 3864536, 4635567, 5524876, 6545561, 7711652, 9038143
Offset: 1

Views

Author

R. H. Hardin Nov 23 2011

Keywords

Comments

Row 3 of A200838.

Examples

			Some solutions for n=3
..2....1....1....1....2....3....1....0....0....0....2....2....1....1....2....3
..3....3....3....3....0....0....0....2....0....0....0....2....3....1....0....3
..0....3....0....0....0....1....3....2....2....3....0....0....1....2....3....2
..3....1....2....3....3....1....3....0....0....0....0....2....2....1....3....3
..0....2....0....2....0....0....1....0....2....0....0....0....2....3....0....2
		

Formula

Empirical: a(n) = (4/15)*n^5 + (17/6)*n^4 + (28/3)*n^3 + (73/6)*n^2 + (32/5)*n + 1.
Conjectures from Colin Barker, Oct 14 2017: (Start)
G.f.: x*(32 - x + 10*x^2 - 14*x^3 + 6*x^4 - x^5) / (1 - x)^6.
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6) for n>6.
(End)

A200841 Number of 0..n arrays x(0..5) of 6 elements without any two consecutive increases or two consecutive decreases.

Original entry on oeis.org

64, 529, 2356, 7587, 19930, 45465, 93472, 177381, 315844, 533929, 864436, 1349335, 2041326, 3005521, 4321248, 6083977, 8407368, 11425441, 15294868, 20197387, 26342338, 33969321, 43350976, 54795885, 68651596, 85307769, 105199444
Offset: 1

Views

Author

R. H. Hardin Nov 23 2011

Keywords

Comments

Row 4 of A200838.

Examples

			Some solutions for n=3
..3....0....3....3....1....2....1....1....3....3....3....1....2....0....3....1
..3....3....3....3....0....3....3....1....1....0....0....0....3....3....3....1
..3....0....1....3....3....3....2....0....2....0....3....1....0....2....0....1
..3....2....1....1....0....0....3....0....1....3....2....1....0....3....0....3
..0....0....1....1....0....0....3....0....1....3....3....0....3....1....0....3
..3....3....0....3....3....3....0....0....0....2....1....0....1....1....0....2
		

Formula

Empirical: a(n) = (61/360)*n^6 + (93/40)*n^5 + (779/72)*n^4 + (521/24)*n^3 + (1801/90)*n^2 + (239/30)*n + 1.
Conjectures from Colin Barker, Oct 14 2017: (Start)
G.f.: x*(64 + 81*x - 3*x^2 - 36*x^3 + 22*x^4 - 7*x^5 + x^6) / (1 - x)^7.
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7) for n>7.
(End)

A200842 Number of 0..n arrays x(0..6) of 7 elements without any two consecutive increases or two consecutive decreases.

Original entry on oeis.org

128, 1465, 8210, 31677, 96690, 250913, 577660, 1212729, 2365804, 4346969, 7598878, 12735125, 20585358, 32247681, 49148888, 73113073, 106439160, 151987897, 213278858, 294597997, 401116298, 539020065, 715653396, 939673385, 1221218596
Offset: 1

Views

Author

R. H. Hardin Nov 23 2011

Keywords

Comments

Row 5 of A200838.

Examples

			Some solutions for n=3
..3....2....2....0....0....2....1....2....3....1....2....0....2....3....3....0
..1....1....2....1....1....1....0....0....3....1....0....3....0....3....0....2
..1....1....0....1....1....2....3....1....0....0....0....2....0....3....2....1
..1....2....0....0....1....0....0....0....2....1....3....2....0....2....0....2
..3....1....3....0....1....0....2....3....1....0....2....1....3....2....1....2
..1....1....3....0....3....3....1....3....2....0....3....3....1....0....1....2
..1....0....3....3....2....0....1....1....2....2....2....1....1....2....3....3
		

Formula

Empirical: a(n) = (34/315)*n^7 + (163/90)*n^6 + (1981/180)*n^5 + (557/18)*n^4 + (7807/180)*n^3 + (1361/45)*n^2 + (333/35)*n + 1.
Conjectures from Colin Barker, Oct 14 2017: (Start)
G.f.: x*(128 + 441*x + 74*x^2 - 151*x^3 + 74*x^4 - 29*x^5 + 8*x^6 - x^7) / (1 - x)^8.
a(n) = 8*a(n-1) - 28*a(n-2) + 56*a(n-3) - 70*a(n-4) + 56*a(n-5) - 28*a(n-6) + 8*a(n-7) - a(n-8) for n>8.
(End)

A200843 Number of 0..n arrays x(0..7) of 8 elements without any two consecutive increases or two consecutive decreases.

Original entry on oeis.org

256, 4057, 28610, 132263, 469116, 1384813, 3570086, 8291391, 17720746, 35389651, 66794740, 120185585, 207567842, 345957699, 558926356, 878476037, 1347291804, 2021416213, 2973396622, 4295957731, 6106254704, 8550764993, 11810879754
Offset: 1

Views

Author

R. H. Hardin Nov 23 2011

Keywords

Comments

Row 6 of A200838.

Examples

			Some solutions for n=3
..1....1....1....3....0....0....0....0....0....0....0....2....0....3....0....3
..3....1....1....2....3....3....1....1....0....0....2....1....2....2....0....3
..3....0....3....2....2....0....0....1....3....3....2....3....2....2....0....0
..3....1....0....1....3....2....0....3....1....0....0....3....2....1....1....1
..0....0....1....1....3....0....3....0....3....3....2....0....3....1....0....0
..3....3....1....1....2....3....0....2....0....2....0....2....3....3....2....3
..3....2....3....2....2....2....2....1....0....2....2....1....3....1....1....1
..2....3....2....0....0....2....0....3....2....3....1....2....3....3....3....2
		

Formula

Empirical: a(n) = (277/4032)*n^8 + (1375/1008)*n^7 + (4933/480)*n^6 + (2723/72)*n^5 + (14161/192)*n^4 + (11197/144)*n^3 + (216211/5040)*n^2 + (929/84)*n + 1.
Conjectures from Colin Barker, Oct 14 2017: (Start)
G.f.: x*(256 + 1753*x + 1313*x^2 - 679*x^3 + 177*x^4 - 77*x^5 + 35*x^6 - 9*x^7 + x^8) / (1 - x)^9.
a(n) = 9*a(n-1) - 36*a(n-2) + 84*a(n-3) - 126*a(n-4) + 126*a(n-5) - 84*a(n-6) + 36*a(n-7) - 9*a(n-8) + a(n-9) for n>9.
(End)
Showing 1-10 of 11 results. Next