cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A200842 Number of 0..n arrays x(0..6) of 7 elements without any two consecutive increases or two consecutive decreases.

Original entry on oeis.org

128, 1465, 8210, 31677, 96690, 250913, 577660, 1212729, 2365804, 4346969, 7598878, 12735125, 20585358, 32247681, 49148888, 73113073, 106439160, 151987897, 213278858, 294597997, 401116298, 539020065, 715653396, 939673385, 1221218596
Offset: 1

Views

Author

R. H. Hardin Nov 23 2011

Keywords

Comments

Row 5 of A200838.

Examples

			Some solutions for n=3
..3....2....2....0....0....2....1....2....3....1....2....0....2....3....3....0
..1....1....2....1....1....1....0....0....3....1....0....3....0....3....0....2
..1....1....0....1....1....2....3....1....0....0....0....2....0....3....2....1
..1....2....0....0....1....0....0....0....2....1....3....2....0....2....0....2
..3....1....3....0....1....0....2....3....1....0....2....1....3....2....1....2
..1....1....3....0....3....3....1....3....2....0....3....3....1....0....1....2
..1....0....3....3....2....0....1....1....2....2....2....1....1....2....3....3
		

Formula

Empirical: a(n) = (34/315)*n^7 + (163/90)*n^6 + (1981/180)*n^5 + (557/18)*n^4 + (7807/180)*n^3 + (1361/45)*n^2 + (333/35)*n + 1.
Conjectures from Colin Barker, Oct 14 2017: (Start)
G.f.: x*(128 + 441*x + 74*x^2 - 151*x^3 + 74*x^4 - 29*x^5 + 8*x^6 - x^7) / (1 - x)^8.
a(n) = 8*a(n-1) - 28*a(n-2) + 56*a(n-3) - 70*a(n-4) + 56*a(n-5) - 28*a(n-6) + 8*a(n-7) - a(n-8) for n>8.
(End)