cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A200850 The number of forests of labeled rooted strictly binary trees (each vertex has exactly two children or none) on n nodes.

This page as a plain text file.
%I A200850 #18 Apr 11 2022 18:02:42
%S A200850 1,1,1,4,13,91,511,5146,41329,544573,5704381,93001096,1203040741,
%T A200850 23391560479,360416247283,8142893840446,145661102170081,
%U A200850 3750604005834361,76415186203927129,2209120481052933868,50510327090854792861,1620053085929867956291
%N A200850 The number of forests of labeled rooted strictly binary trees (each vertex has exactly two children or none) on n nodes.
%H A200850 Alois P. Heinz, <a href="/A200850/b200850.txt">Table of n, a(n) for n = 0..200</a>
%F A200850 E.g.f.: exp(A(x)) where A(x) is the e.g.f. for A036770.
%F A200850 Recurrence: 2*a(n) = -(n-2)*(n+1)*a(n-1) + 2*(n-1)*(2*n-3)*a(n-2) + 2*(n-3)*(n-2)*(n-1)^2*a(n-3). - _Vaclav Kotesovec_, Aug 14 2013
%F A200850 a(n) ~ 2^(n/2+1/2)*n^(n-1)*exp(-n-sqrt(2))*(exp(2*sqrt(2))-(-1)^n). - _Vaclav Kotesovec_, Aug 14 2013
%p A200850 a:= proc(n) option remember;
%p A200850       `if`(n=0, 1, add((n-1)!/(n-1-2*j)! *binomial(2*j+1, j)/
%p A200850                        (2^j) *a(n-1-2*j), j=0..(n-1)/2))
%p A200850     end:
%p A200850 seq(a(n), n=0..30);  # _Alois P. Heinz_, Nov 23 2011
%t A200850 Range[0,19]! CoefficientList[Series[Exp[(1-(1-2x^2)^(1/2))/x],{x,0,19}],x]
%Y A200850 Cf. A036770.
%K A200850 nonn
%O A200850 0,4
%A A200850 _Geoffrey Critzer_, Nov 23 2011