A200871 T(n,k)=Number of 0..k arrays x(0..n+1) of n+2 elements without any interior element greater than both neighbors or less than both neighbors.
6, 17, 10, 36, 37, 16, 65, 94, 77, 26, 106, 195, 236, 163, 42, 161, 356, 567, 602, 343, 68, 232, 595, 1168, 1673, 1528, 723, 110, 321, 932, 2163, 3886, 4917, 3882, 1523, 178, 430, 1389, 3704, 7973, 12890, 14455, 9858, 3209, 288, 561, 1990, 5973, 14932, 29325
Offset: 1
Examples
Some solutions for n=4 k=3 ..3....2....0....0....2....0....1....0....0....2....3....3....1....1....1....3 ..2....2....0....2....0....2....2....2....0....3....1....3....2....1....2....3 ..2....1....3....3....0....2....2....2....0....3....0....3....2....2....2....3 ..2....0....3....3....3....0....1....0....2....3....0....2....2....2....0....2 ..2....0....0....1....3....0....1....0....2....3....0....2....2....2....0....2 ..3....2....0....1....1....0....2....3....3....2....2....1....3....2....0....0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..9999
Programs
-
Mathematica
t[0,k_,x_,y_] := 1; t[n_,k_,x_,y_] := t[n,k,x,y] = Sum[If[z <= x <= y || y <= x <= z, t[n-1, k, z, x], 0], {z, k+1}]; t[n_, k_] := Sum[t[n, k, x, y], {x, k+1}, {y, k+1}]; TableForm@ Table[t[n, k], {n, 8}, {k, 8}] (* Giovanni Resta, Mar 05 2014 *)
Formula
Empirical for columns:
k=1: a(n) = a(n-1) +a(n-2)
k=2: a(n) = 2*a(n-1) +a(n-4)
k=3: a(n) = 2*a(n-1) +a(n-2) +2*a(n-4) +a(n-5)
k=4: a(n) = 3*a(n-1) -a(n-2) +a(n-3) +4*a(n-4) +a(n-6) +a(n-7)
k=5: a(n) = 3*a(n-1) +a(n-3) +7*a(n-4) +3*a(n-5) +2*a(n-6) +3*a(n-7) +a(n-8)
k=6: a(n) = 4*a(n-1) -3*a(n-2) +4*a(n-3) +9*a(n-4) +7*a(n-6) +6*a(n-7) +a(n-8) +2*a(n-9) +a(n-10)
k=7: a(n) = 4*a(n-1) -2*a(n-2) +4*a(n-3) +15*a(n-4) +6*a(n-5) +12*a(n-6) +16*a(n-7) +7*a(n-8) +5*a(n-9) +4*a(n-10) +a(n-11)
Empirical for rows:
n=1: a(k) = (1/3)*k^3 + 2*k^2 + (8/3)*k + 1
n=2: a(k) = (1/12)*k^4 + (3/2)*k^3 + (47/12)*k^2 + (7/2)*k + 1
n=3: a(k) = (1/60)*k^5 + (3/4)*k^4 + (15/4)*k^3 + (25/4)*k^2 + (127/30)*k + 1
n=4: a(k) = (1/360)*k^6 + (7/24)*k^5 + (197/72)*k^4 + (185/24)*k^3 + (1667/180)*k^2 + 5*k + 1
n=5: a(k) = (1/2520)*k^7 + (17/180)*k^6 + (281/180)*k^5 + (64/9)*k^4 + (4927/360)*k^3 + (2303/180)*k^2 + (604/105)*k + 1
n=6: a(k) = (1/20160)*k^8 + (19/720)*k^7 + (211/288)*k^6 + (1889/360)*k^5 + (44167/2880)*k^4 + (15991/720)*k^3 + (5689/336)*k^2 + (391/60)*k + 1
n=7: a(k) = (1/181440)*k^9 + (131/20160)*k^8 + (8893/30240)*k^7 + (4621/1440)*k^6 + (118933/8640)*k^5 + (83957/2880)*k^4 + (763489/22680)*k^3 + (36343/1680)*k^2 + (9169/1260)*k + 1
Comments