cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A200878 Composite numbers whose prime factors have equal numbers of bits.

This page as a plain text file.
%I A200878 #26 Oct 11 2021 13:45:00
%S A200878 4,6,8,9,12,16,18,24,25,27,32,35,36,48,49,54,64,72,81,96,108,121,125,
%T A200878 128,143,144,162,169,175,192,216,243,245,256,288,289,323,324,343,361,
%U A200878 384,391,432,437,486,493,512,527,529,551,576,589,625,648,667,713
%N A200878 Composite numbers whose prime factors have equal numbers of bits.
%H A200878 Arkadiusz Wesolowski, <a href="/A200878/b200878.txt">Table of n, a(n) for n = 1..10000</a>
%e A200878 7429 = 17*19*23 -> 10001*10011*10111, therefore 7429 is a term.
%e A200878 7430 = 2*5*743 -> 10*101*1011100111, therefore 7430 is not a term.
%t A200878 lst = {}; Do[b = IntegerDigits[FactorInteger[n], 2]; If[! PrimeQ[n] && Length[b[[-1, 1]]] == Length[b[[1, 1]]], AppendTo[lst, n]], {n, 4, 6!}]; lst (* _Arkadiusz Wesolowski_, Dec 03 2011 *)
%t A200878 Select[Range[800],CompositeQ[#]&&Length[Union[IntegerLength[ #,2]&/@ FactorInteger[ #][[All,1]]]]==1&] (* _Harvey P. Dale_, Oct 11 2021 *)
%o A200878 (PARI) is(n)=my(f=factor(n)[,1]);#binary(f[1])==#binary(f[#f])&&!isprime(n) \\ _Charles R Greathouse IV_, Dec 23 2011
%Y A200878 Supersequence of A085721 and of A182302.
%K A200878 base,nonn
%O A200878 1,1
%A A200878 _Arkadiusz Wesolowski_, Nov 23 2011