cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A200886 T(n,k) is the number of 0..k arrays x(0..n+1) of n+2 elements without any interior element greater than both neighbors.

Original entry on oeis.org

7, 22, 12, 50, 51, 21, 95, 144, 121, 37, 161, 325, 422, 292, 65, 252, 636, 1121, 1268, 704, 114, 372, 1127, 2507, 3985, 3823, 1691, 200, 525, 1856, 4977, 10213, 14288, 11472, 4059, 351, 715, 2889, 9052, 22736, 42182, 50995, 34350, 9749, 616, 946, 4300, 15393
Offset: 1

Views

Author

R. H. Hardin, Nov 23 2011

Keywords

Comments

T(n,k) is the number of lattice points in k*P where P is a polytope of dimension n+2 in R^(n+2) whose vertices are lattice points, and therefore for each n it is an Ehrhart polynomial of degree n+2. This confirms the empirical formulas for the rows. - Robert Israel, Mar 21 2021

Examples

			Some solutions for n=4, k=3:
  1   2   3   0   0   1   2   3   0   1   2   3   3   1   2   2
  1   2   1   0   1   0   1   0   3   0   2   2   3   0   3   2
  2   2   3   0   2   2   3   2   3   0   3   3   3   1   3   0
  2   0   3   0   3   3   3   3   2   0   3   3   3   1   0   2
  1   1   2   1   3   3   2   3   0   1   3   3   3   1   2   3
  0   2   2   1   3   2   1   0   2   1   2   1   1   3   3   3
Table starts:
....7....22.....50......95......161.......252.......372........525........715
...12....51....144.....325......636......1127......1856.......2889.......4300
...21...121....422....1121.....2507......4977......9052......15393......24817
...37...292...1268....3985....10213.....22736.....45648......84681.....147565
...65...704...3823...14288....42182....105813....235538.....478467.....904111
..114..1691..11472...50995...173606....491533...1215616....2710413....5567530
..200..4059..34350..181336...710976...2269938...6233356...15250675...34054592
..351..9749.102896..644721..2908797..10462235..31868448...85473225..207289059
..616.23422.308419.2294193.11911516..48259083.163014678..479101189.1261310492
.1081.56268.924532.8166441.48807427.222798408.834763824.2688814689.7684922749
		

Crossrefs

Column 1 is A005251(n+5).
Row 1 is A002412(n+1).

Formula

Empirical for columns:
k=1: a(n) = 2*a(n-1) -a(n-2) +a(n-3)
k=2: a(n) = 3*a(n-1) -3*a(n-2) +4*a(n-3) -a(n-4) +a(n-5)
k=3: a(n) = 4*a(n-1) -6*a(n-2) +10*a(n-3) -5*a(n-4) +6*a(n-5) -a(n-6) +a(n-7)
k=4: a(n) = 5*a(n-1) -10*a(n-2) +20*a(n-3) -15*a(n-4) +21*a(n-5) -7*a(n-6) +8*a(n-7) -a(n-8) +a(n-9)
k=5: a(n) = 6*a(n-1) -15*a(n-2) +35*a(n-3) -35*a(n-4) +56*a(n-5) -28*a(n-6) +36*a(n-7) -9*a(n-8) +10*a(n-9) -a(n-10) +a(n-11)
k=6: a(n) = 7*a(n-1) -21*a(n-2) +56*a(n-3) -70*a(n-4) +126*a(n-5) -84*a(n-6) +120*a(n-7) -45*a(n-8) +55*a(n-9) -11*a(n-10) +12*a(n-11) -a(n-12) +a(n-13)
k=7: a(n) = 8*a(n-1) -28*a(n-2) +84*a(n-3) -126*a(n-4) +252*a(n-5) -210*a(n-6) +330*a(n-7) -165*a(n-8) +220*a(n-9) -66*a(n-10) +78*a(n-11) -13*a(n-12) +14*a(n-13) -a(n-14) +a(n-15)
Empirical for rows:
n=1: a(k) = (2/3)*k^3 + (5/2)*k^2 + (17/6)*k + 1
n=2: a(k) = (1/3)*k^4 + (7/3)*k^3 + (14/3)*k^2 + (11/3)*k + 1
n=3: a(k) = (2/15)*k^5 + (11/6)*k^4 + (35/6)*k^3 + (23/3)*k^2 + (68/15)*k + 1
n=4: a(k) = (2/45)*k^6 + (19/15)*k^5 + (217/36)*k^4 + (71/6)*k^3 + (2057/180)*k^2 + (27/5)*k + 1
n=5: a(k) = (4/315)*k^7 + (7/9)*k^6 + (241/45)*k^5 + (1067/72)*k^4 + (3757/180)*k^3 + (1145/72)*k^2 + (2629/420)*k + 1
n=6: a(k) = (1/315)*k^8 + (134/315)*k^7 + (21/5)*k^6 + (571/36)*k^5 + (1841/60)*k^4 + (6047/180)*k^3 + (26603/1260)*k^2 + (299/42)*k + 1
n=7: a(k) = (2/2835)*k^9 + (131/630)*k^8 + (2803/945)*k^7 + (1349/90)*k^6 + (41449/1080)*k^5 + (20423/360)*k^4 + (1149293/22680)*k^3 + (22741/840)*k^2 + (2011/252)*k + 1