cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A200888 Number of 0..n arrays x(0..4) of 5 elements without any interior element greater than both neighbors.

Original entry on oeis.org

21, 121, 422, 1121, 2507, 4977, 9052, 15393, 24817, 38313, 57058, 82433, 116039, 159713, 215544, 285889, 373389, 480985, 611934, 769825, 958595, 1182545, 1446356, 1755105, 2114281, 2529801, 3008026, 3555777, 4180351, 4889537, 5691632, 6595457
Offset: 1

Views

Author

R. H. Hardin, Nov 23 2011

Keywords

Comments

Row 3 of A200886.

Examples

			Some solutions for n=3
..3....3....3....2....0....1....0....3....1....3....3....2....2....2....0....2
..3....3....3....2....1....1....0....3....0....2....1....2....1....3....1....2
..3....3....2....3....1....0....0....2....0....3....3....0....0....3....1....2
..3....3....1....3....0....2....2....3....2....3....3....2....3....1....0....0
..2....0....1....2....3....2....3....3....3....3....0....2....3....2....1....0
		

Formula

Empirical: a(n) = (2/15)*n^5 + (11/6)*n^4 + (35/6)*n^3 + (23/3)*n^2 + (68/15)*n + 1.
Conjectures from Colin Barker, Oct 16 2017: (Start)
G.f.: x*(21 - 5*x + 11*x^2 - 16*x^3 + 6*x^4 - x^5) / (1 - x)^6.
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6) for n>6.
(End)