cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A200965 Triangle T(n,k) = coefficient of x^n in expansion of ((1-sqrt(1-4*x))/((1-x)*2))^k = sum(n>=k, T(n,k) * x^n).

This page as a plain text file.
%I A200965 #17 May 30 2022 06:06:19
%S A200965 1,2,1,4,4,1,9,12,6,1,23,34,24,8,1,65,98,83,40,10,1,197,294,273,164,
%T A200965 60,12,1,626,919,891,612,285,84,14,1,2056,2974,2938,2188,1195,454,112,
%U A200965 16,1,6918,9891,9846,7698,4677,2118,679,144,18,1,23714,33604,33549
%N A200965 Triangle T(n,k) = coefficient of x^n in expansion of ((1-sqrt(1-4*x))/((1-x)*2))^k = sum(n>=k, T(n,k) * x^n).
%C A200965 Triangle T(n,k)=
%C A200965 1. Riordan Array (1,(1-sqrt(1-4*x))/((1-x)*2)) without first column.
%C A200965 2. Riordan Array ((1-sqrt(1-4*x))/((1-x)*2*x),(1-sqrt(1-4*x))/((1-x)*2)) numbering triangle (0,0).
%C A200965 Convolution triangle of A014137(n). - _Philippe Deléham_, Jan 23 2014
%F A200965 T(n,k):=k*sum(i=0..n-k, (binomial(i+k-1,k-1)*binomial(2*(n-i)-k-1,n-i-1))/(n-i)).
%e A200965 Triangle:
%e A200965 1,
%e A200965 2, 1,
%e A200965 4, 4, 1,
%e A200965 9, 12, 6, 1,
%e A200965 23, 34, 24, 8, 1,
%e A200965 65, 98, 83, 40, 10, 1,
%e A200965 197, 294, 273, 164, 60, 12, 1
%t A200965 T[n_, k_]:= (k/n) (Binomial[-1 - k + 2 n, -1 + n] HypergeometricPFQ[{k, k - n, -n}, {1/2 + k/2 - n, 1 + k/2 - n}, 1/4]);
%t A200965 Table[T[n, k], {n, 1, 9}, {k, 1, n}] // TableForm (* _Peter Luschny_, May 30 2022 *)
%o A200965 (Maxima)
%o A200965 T(n,k):=k*sum((binomial(i+k-1,k-1)*binomial(2*(n-i)-k-1,n-i-1))/(n-i),i,0,n-k);
%Y A200965 Cf. Columns: A014137, A014143
%K A200965 nonn,tabl
%O A200965 1,2
%A A200965 _Vladimir Kruchinin_, Nov 25 2011