A200984 Number of nX2 0..4 arrays with every row and column nondecreasing rightwards and downwards, and the number of instances of each value within one of each other.
10, 10, 20, 79, 21, 226, 157, 227, 678, 120, 1272, 789, 1015, 2697, 404, 4232, 2484, 3008, 7496, 1025, 10650, 6050, 7060, 16895, 2181, 22530, 12525, 14255, 33174, 4116, 42336, 23177, 25907, 59073, 7120, 72992, 39504, 43560, 97792, 11529, 117882, 63234
Offset: 1
Keywords
Examples
Some solutions for n=3 ..0..1....0..2....0..1....0..3....0..2....0..1....0..1....0..2....0..2....0..2 ..1..2....1..3....2..3....1..3....1..3....0..3....0..2....1..3....0..3....1..3 ..3..4....4..4....2..4....2..4....2..4....2..4....3..4....3..4....1..4....1..4
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Formula
Empirical: a(n) = 5*a(n-5) -10*a(n-10) +10*a(n-15) -5*a(n-20) +a(n-25)
Subsequences for n modulo 5 = 1,2,3,4,0:
p=(n+4)/5: a(n) = (115/6)*p^4 - 11*p^3 + (11/6)*p^2
q=(n+3)/5: a(n) = (115/12)*q^4 + (1/2)*q^3 - (1/12)*q^2
r=(n+2)/5: a(n) = (115/12)*r^4 + (49/6)*r^3 + (23/12)*r^2 + (1/3)*r
s=(n+1)/5: a(n) = (115/6)*s^4 + 35*s^3 + (125/6)*s^2 + 4*s
t=(n+0)/5: a(n) = (23/12)*t^4 + (37/6)*t^3 + (91/12)*t^2 + (13/3)*t + 1
Comments