A200990 T(n,k)=Number of nXk 0..4 arrays with every row and column nondecreasing rightwards and downwards, and the number of instances of each value within one of each other.
5, 10, 10, 10, 10, 10, 5, 20, 20, 5, 1, 79, 92, 79, 1, 5, 21, 537, 537, 21, 5, 10, 226, 140, 1225, 140, 226, 10, 10, 157, 3157, 1095, 1095, 3157, 157, 10, 5, 227, 3604, 15023, 4919, 15023, 3604, 227, 5, 1, 678, 6692, 95845, 27000, 27000, 95845, 6692, 678, 1, 5, 120
Offset: 1
Examples
Some solutions for n=5 k=3 ..0..1..2....0..0..2....0..1..2....0..0..1....0..0..0....0..1..1....0..0..0 ..0..1..3....0..1..2....0..1..2....0..1..3....1..1..2....0..1..2....1..1..1 ..0..1..4....1..3..4....0..1..2....1..2..3....1..2..3....0..3..3....2..3..4 ..2..2..4....1..3..4....3..3..4....2..2..3....2..3..3....2..3..4....2..3..4 ..3..3..4....2..3..4....3..4..4....4..4..4....4..4..4....2..4..4....2..3..4
Links
- R. H. Hardin, Table of n, a(n) for n = 1..199
Crossrefs
Column 1 for a 0..z array is binomial(z+1,n modulo (z+1))
Formula
T(n,1) = binomial(5,n modulo 5). For a 0..z array, T(n,1) = binomial(z+1, n modulo (z+1)).
Comments