cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A200990 T(n,k)=Number of nXk 0..4 arrays with every row and column nondecreasing rightwards and downwards, and the number of instances of each value within one of each other.

Original entry on oeis.org

5, 10, 10, 10, 10, 10, 5, 20, 20, 5, 1, 79, 92, 79, 1, 5, 21, 537, 537, 21, 5, 10, 226, 140, 1225, 140, 226, 10, 10, 157, 3157, 1095, 1095, 3157, 157, 10, 5, 227, 3604, 15023, 4919, 15023, 3604, 227, 5, 1, 678, 6692, 95845, 27000, 27000, 95845, 6692, 678, 1, 5, 120
Offset: 1

Views

Author

R. H. Hardin Nov 25 2011

Keywords

Comments

Table starts
..5..10....10......5.......1........5.........10..........10...........5
.10..10....20.....79......21......226........157.........227.........678
.10..20....92....537.....140.....3157.......3604........6692.......26168
..5..79...537...1225....1095....15023......95845......268375......325061
..1..21...140...1095....4919....27000......97341......383172.....1188521
..5.226..3157..15023...27000...752271....8434277....39361323....80878071
.10.157..3604..95845...97341..8434277...29555346...171588826..1801771085
.10.227..6692.268375..383172.39361323..171588826..1278883650.16557969007
..5.678.26168.325061.1188521.80878071.1801771085.16557969007.65182166083
..1.120..5408.168262.3704820.64001290..853004113..9528745293.89750034774

Examples

			Some solutions for n=5 k=3
..0..1..2....0..0..2....0..1..2....0..0..1....0..0..0....0..1..1....0..0..0
..0..1..3....0..1..2....0..1..2....0..1..3....1..1..2....0..1..2....1..1..1
..0..1..4....1..3..4....0..1..2....1..2..3....1..2..3....0..3..3....2..3..4
..2..2..4....1..3..4....3..3..4....2..2..3....2..3..3....2..3..4....2..3..4
..3..3..4....2..3..4....3..4..4....4..4..4....4..4..4....2..4..4....2..3..4
		

Crossrefs

Column 1 for a 0..z array is binomial(z+1,n modulo (z+1))

Formula

T(n,1) = binomial(5,n modulo 5). For a 0..z array, T(n,1) = binomial(z+1, n modulo (z+1)).