cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A201018 Composite numbers whose multiplicative digital root is 5.

This page as a plain text file.
%I A201018 #17 Feb 16 2025 08:33:16
%S A201018 15,35,51,57,75,115,135,153,175,315,351,355,395,511,513,517,531,535,
%T A201018 539,553,575,579,597,715,755,759,795,935,957,975,1115,1135,1157,1175,
%U A201018 1315,1351,1355,1359,1395,1513,1517,1535,1539,1557,1575,1593,1715,1751,1755,1795
%N A201018 Composite numbers whose multiplicative digital root is 5.
%C A201018 Complement of A201017 with respect to A034052.
%H A201018 Harvey P. Dale, <a href="/A201018/b201018.txt">Table of n, a(n) for n = 1..1000</a>
%H A201018 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/MultiplicativeDigitalRoot.html">Multiplicative Digital Root</a>
%e A201018 Composite number 153 is in the sequence because 1*5*3=15, 1*5=5.
%t A201018 mdr5Q[n_]:=NestWhile[Times@@IntegerDigits[#]&,n,#>9&]==5; Select[Range[1800], CompositeQ[ #] &&mdr5Q[#]&] (* _Harvey P. Dale_, Dec 19 2023 *)
%Y A201018 Cf. A201017 (primes whose multiplicative digital root is 5), A034052 (numbers whose multiplicative digital root is 5).
%K A201018 nonn,base
%O A201018 1,1
%A A201018 _Jaroslav Krizek_, Nov 25 2011