cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A201044 Number of -n..n arrays of 5 elements with adjacent element differences also in -n..n.

Original entry on oeis.org

99, 1161, 6083, 21141, 57343, 131781, 268983, 502265, 875083, 1442385, 2271963, 3445805, 5061447, 7233325, 10094127, 13796145, 18512627, 24439129, 31794867, 40824069, 51797327, 65012949, 80798311, 99511209, 121541211, 147311009
Offset: 1

Views

Author

R. H. Hardin, Nov 26 2011

Keywords

Comments

Row 5 of A201042.

Examples

			Some solutions for n=5:
.-5...-3...-4...-2...-3...-4...-1...-4...-4....5...-5...-1...-1....0...-2...-1
.-1....0...-2....2....2...-4...-2....0...-2....0...-2....0...-3....0....1....0
.-5....0....1....2...-2....1...-1...-2...-1....2...-2....2...-2...-3....0....1
..0....5...-4...-2....3...-2...-2...-3...-2....1....1....1...-2...-5....0...-4
.-4....1...-5....1....0...-1...-4....0....0....5....0....0...-5...-2...-3...-2
		

Crossrefs

Cf. A201042.

Formula

Empirical: a(n) = (169/15)*n^5 + (169/6)*n^4 + 32*n^3 + (119/6)*n^2 + (101/15)*n + 1.
Conjectures from Colin Barker, May 22 2018: (Start)
G.f.: x*(99 + 567*x + 602*x^2 + 78*x^3 + 7*x^4 - x^5) / (1 - x)^6.
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6) for n>6.
(End)