cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A201047 Coordinates x of Mordell elliptic curves x^3-y^2 for primary extremal points with quadratic extensions over rationals.

This page as a plain text file.
%I A201047 #20 Mar 31 2012 10:22:18
%S A201047 1942,2878,3862,6100,8380,18694,31228,93844,111382,117118,129910,
%T A201047 143950,186145,210025,575800,1193740,1248412,1326025,1388545,1501504,
%U A201047 1697908,1813660,1946737,2069353,2151262,2305180,3864190,3897622,54054144,61974313,63546025
%N A201047 Coordinates x of Mordell elliptic curves x^3-y^2 for primary extremal points with quadratic extensions over rationals.
%C A201047 For y coordinates see A201269.
%C A201047 For distances d between cubes and squares see A201268.
%C A201047 Primary points in A200656.
%C A201047 For definition primary points see A200656.
%C A201047 For secondary terms in A200656 see A201048.
%C A201047 For successive quadratic extensions see A201278.
%C A201047 Theorem (*Artur Jasinski*):
%C A201047 Every particular coordinate x contained only one extremal point.
%C A201047 Proof (*Artur Jasinski*): Coordinate y is computable from the formula y(x) = round(sqrt(x^3)) and distance d between cube of x and square of y is computable from the formula d(x) = x^3-(round(sqrt(x^3)))^2.
%F A201047 a(n) = (A201268(n)+(A201269(n))^2)^(1/3).
%Y A201047 Cf. A201268, A201269, A200656.
%K A201047 nonn
%O A201047 1,1
%A A201047 _Artur Jasinski_, Nov 26 2011