This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A201052 #60 Dec 23 2024 14:53:42 %S A201052 1,2,2,3,3,3,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6, %T A201052 6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7, %U A201052 7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8 %N A201052 a(n) is the maximal number c of integers that can be chosen from {1,2,...,n} so that all 2^c subsets have distinct sums. %C A201052 In the count 2^c of the cardinality of subsets of a set with cardinality c, the empty set - with sum 0 - is included; 2^c is just the row sum of the c-th row in the Pascal triangle. %C A201052 Conjecture (confirmed through k=7): a(n)=k for all n in the interval A005318(k) <= n < A005318(k+1). - _Jon E. Schoenfield_, Nov 28 2013 [Note: This conjecture is false; see A276661 for a counterexample (n=34808712605260918463) in which n is in the interval A005318(66) <= n < A005318(67), yet a(n)=67, not 66. - _Jon E. Schoenfield_, Nov 05 2016] %C A201052 A276661 is the main entry for the distinct subset sums problem. - _N. J. A. Sloane_, Apr 24 2024 %H A201052 Fausto A. C. Cariboni, <a href="/A201052/b201052.txt">Table of n, a(n) for n = 1..220</a> (terms 1..120 from Jon E. Schoenfield) %H A201052 T. Khovanova, <a href="https://web.archive.org/web/*/http://list.seqfan.eu/oldermail/seqfan/2010-August/005757.html">The weight puzzle sequence</a>, SeqFan Mailing list Aug 24 2010 %H A201052 T. Khovanova et al., <a href="http://blog.tanyakhovanova.com/?p=269">The weights puzzle</a> %H A201052 Jon E. Schoenfield, <a href="/A201052/a201052.txt">Excel/VBA macro</a> %e A201052 Numbers n and an example of a subset of {1..n} exhibiting the maximum cardinality c=a(n): %e A201052 1, {1} %e A201052 2, {1, 2} %e A201052 3, {1, 2} %e A201052 4, {1, 2, 4} %e A201052 5, {1, 2, 4} %e A201052 6, {1, 2, 4} %e A201052 7, {3, 5, 6, 7} %e A201052 8, {1, 2, 4, 8} %e A201052 9, {1, 2, 4, 8} %e A201052 10, {1, 2, 4, 8} %e A201052 11, {1, 2, 4, 8} %e A201052 12, {1, 2, 4, 8} %e A201052 13, {3, 6, 11, 12, 13} %e A201052 14, {1, 6, 10, 12, 14} %e A201052 15, {1, 6, 10, 12, 14} %e A201052 16, {1, 2, 4, 8, 16} %e A201052 17, {1, 2, 4, 8, 16} %e A201052 18, {1, 2, 4, 8, 16} %e A201052 For examples of maximum-cardinality subsets at values of n where a(n) > a(n-1), see A096858. - _Jon E. Schoenfield_, Nov 28 2013 %p A201052 # is any subset of L uniquely determined by its total weight? %p A201052 iswts := proc(L) %p A201052 local wtset,s,c,subL,thiswt ; %p A201052 # the weight sums are to be unique, so sufficient to remember the set %p A201052 wtset := {} ; %p A201052 # loop over all subsets of weights generated by L %p A201052 for s from 1 to nops(L) do %p A201052 c := combinat[choose](L,s) ; %p A201052 for subL in c do %p A201052 # compute the weight sum in this subset %p A201052 thiswt := add(i,i=subL) ; %p A201052 # if this weight sum already appeared: not a candidate %p A201052 if thiswt in wtset then %p A201052 return false; %p A201052 else %p A201052 wtset := wtset union {thiswt} ; %p A201052 end if; %p A201052 end do: %p A201052 end do: %p A201052 # All different subset weights were different: success %p A201052 return true; %p A201052 end proc: %p A201052 # main sequence: given grams 1 to n, determine a subset L %p A201052 # such that each subset of this subset has a different sum. %p A201052 wts := proc(n) %p A201052 local s,c,L ; %p A201052 # select sizes from n (largest size first) down to 1, %p A201052 # so the largest is detected first as required by the puzzle. %p A201052 for s from n to 1 by -1 do %p A201052 # all combinations of subsets of s different grams %p A201052 c := combinat[choose]([seq(i,i=1..n)],s) ; %p A201052 for L in c do %p A201052 # check if any of these meets the requir, print if yes %p A201052 # and return %p A201052 if iswts(L) then %p A201052 print(n,L) ; %p A201052 return nops(L) ; %p A201052 end if; %p A201052 end do: %p A201052 end do: %p A201052 print(n,"-") ; %p A201052 end proc: %p A201052 # loop for weights with maximum n %p A201052 for n from 1 do %p A201052 wts(n) ; %p A201052 end do: # _R. J. Mathar_, Aug 24 2010 %Y A201052 Cf. A005318, A096858, A275972, A276661. %K A201052 nonn,nice %O A201052 1,2 %A A201052 _N. J. A. Sloane_, Nov 26 2011 %E A201052 More terms from _Alois P. Heinz_, Nov 27 2011 %E A201052 More terms from _Jon E. Schoenfield_, Nov 28 2013