cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A201066 Number of nX2 0..6 arrays with every row and column nondecreasing rightwards and downwards, and the number of instances of each value within one of each other.

This page as a plain text file.
%I A201066 #7 Jul 22 2025 16:04:22
%S A201066 21,70,35,77,749,972,127,3034,7161,2170,3258,24178,22584,1925,44526,
%T A201066 93370,24434,32166,212694,174093,12492,282808,559380,136472,168016,
%U A201066 1042800,794792,51945,1159645,2215350,518715,613149,3656445,2665100
%N A201066 Number of nX2 0..6 arrays with every row and column nondecreasing rightwards and downwards, and the number of instances of each value within one of each other.
%C A201066 Column 2 of A201072
%H A201066 R. H. Hardin, <a href="/A201066/b201066.txt">Table of n, a(n) for n = 1..126</a>
%F A201066 Empirical: a(n) = 7*a(n-7) -21*a(n-14) +35*a(n-21) -35*a(n-28) +21*a(n-35) -7*a(n-42) +a(n-49)
%F A201066 Subsequences for n modulo 7 = 1,2,3,4,5,6,0
%F A201066 p=(n+6)/7: a(n) = (5887/60)*p^6 - (799/6)*p^5 + (287/4)*p^4 - (52/3)*p^3 + (49/30)*p^2
%F A201066 q=(n+5)/7: a(n) = (5887/36)*q^6 - (673/6)*q^5 + (151/9)*q^4 + (13/6)*q^3 - (11/36)*q^2
%F A201066 r=(n+4)/7: a(n) = (5887/180)*r^6 + (5/2)*r^5 - (7/36)*r^4 - (1/90)*r^2
%F A201066 s=(n+3)/7: a(n) = (5887/180)*s^6 + (458/15)*s^5 + (365/36)*s^4 + (17/6)*s^3 + (59/90)*s^2 + (2/15)*s
%F A201066 t=(n+2)/7: a(n) = (5887/36)*t^6 + (925/3)*t^5 + (7489/36)*t^4 + (121/2)*t^3 + (143/18)*t^2 + (2/3)*t
%F A201066 u=(n+1)/7: a(n) = (5887/60)*u^6 + (862/3)*u^5 + (4007/12)*u^4 + (1153/6)*u^3 + (817/15)*u^2 + 6*u
%F A201066 v=(n+0)/7: a(n) = (841/180)*v^6 + (101/5)*v^5 + (1325/36)*v^4 + (73/2)*v^3 + (946/45)*v^2 + (34/5)*v + 1
%e A201066 Some solutions for n=10
%e A201066 ..0..3....0..1....0..2....0..0....0..0....0..0....0..1....0..0....0..1....0..1
%e A201066 ..0..3....0..3....0..2....0..1....0..1....1..2....0..1....0..2....0..1....0..1
%e A201066 ..0..4....1..3....1..3....1..2....1..3....1..2....0..3....1..2....0..2....0..2
%e A201066 ..1..4....1..3....1..3....1..2....2..3....1..3....1..4....1..2....1..2....1..2
%e A201066 ..1..4....2..4....1..3....3..3....2..3....2..4....2..4....3..5....2..3....2..4
%e A201066 ..1..5....2..4....2..4....3..5....2..4....3..4....2..4....3..5....3..3....3..4
%e A201066 ..2..5....2..4....4..5....4..5....4..5....3..5....3..5....3..5....4..4....3..5
%e A201066 ..2..5....5..6....4..5....4..5....4..5....4..6....3..5....4..6....5..6....3..5
%e A201066 ..2..6....5..6....5..6....4..6....5..6....5..6....5..6....4..6....5..6....5..6
%e A201066 ..6..6....5..6....6..6....6..6....6..6....5..6....6..6....4..6....5..6....6..6
%K A201066 nonn
%O A201066 1,1
%A A201066 _R. H. Hardin_ Nov 26 2011