A201079 Irregular triangle read by rows: number of {0,2,4,6...}-shifted Schroeder paths of length n and area k.
1, 1, 1, 2, 0, 1, 2, 3, 3, 0, 1, 2, 4, 6, 7, 7, 5, 0, 0, 1, 2, 4, 7, 11, 14, 18, 20, 19, 15, 8, 0, 0, 1, 2, 4, 8, 12, 19, 26, 35, 43, 52, 57, 61, 57, 46, 30, 13, 0, 0, 0, 1, 2, 4, 8, 13, 21, 32, 45, 61, 81, 101, 125, 146, 167, 183, 194, 191, 178, 146, 103, 58, 21, 0, 0, 0
Offset: 0
Examples
Triangle begins 1 1 1 2 0 1 2 3 3 0 1 2 4 6 7 7 5 0 0 1 2 4 7 11 14 18 20 19 15 8 0 0 1 2 4 8 12 19 26 35 43 52 57 61 57 46 30 13 0 0 0 ...
Links
- Brian Drake, Limits of areas under lattice paths, Discrete Math. 309 (2009), no. 12, 3936-3953.
Crossrefs
Programs
-
Mathematica
max = 8; s0 = Range[2, max, 2]; gf = Expand /@ FixedPoint[With[{g = Normal@#}, 1 + q x g (g /. {x :> q^2 x}) + Sum[q^(j^2 - j) x^j Product[g /. {x :> q^(2 i - 2) x}, {i, j}], {j, s0}] + O[x]^max] &, 0]; Flatten[Reverse[CoefficientList[#, q]][[;; ;; 2]] & /@ CoefficientList[gf, x]] (* Andrey Zabolotskiy, Jan 02 2024 *)
Extensions
Name and rows 3 and 5 corrected and row 7 added by Andrey Zabolotskiy, Jan 02 2024