cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A201081 Number of -1..1 arrays of n elements with first and second differences also in -1..1.

Original entry on oeis.org

3, 7, 13, 25, 47, 89, 169, 321, 609, 1155, 2191, 4157, 7887, 14963, 28387, 53855, 102173, 193841, 367751, 697689, 1323641, 2511185, 4764169, 9038483, 17147623, 32532117, 61719263, 117092515, 222145507, 421449879, 799566029, 1516920201
Offset: 1

Views

Author

R. H. Hardin, Nov 26 2011

Keywords

Comments

Column 1 of A201088.

Examples

			Some solutions for n=10:
..1....1....1...-1....1....0....0...-1....1....1....1....1....0....0....0...-1
..1....0....0...-1....0....0...-1...-1....0....0....1....0...-1....1....1...-1
..0...-1....0....0....0...-1...-1....0...-1...-1....1...-1...-1....1....1....0
.-1...-1....0....0....1...-1....0....1...-1...-1....0...-1....0....1....1....0
.-1...-1....0....1....1....0....0....1....0...-1....0....0....1....0....1....0
.-1...-1...-1....1....0....0...-1....0....0...-1...-1....0....1...-1....1...-1
..0...-1...-1....1....0....0...-1...-1....0...-1...-1....0....0...-1....1...-1
..0....0...-1....0....0....1...-1...-1....0...-1....0....0....0...-1....1...-1
..0....0....0....0....1....1....0...-1...-1....0....0....0....0...-1....0....0
..1....0....1...-1....1....1....1...-1...-1....1...-1....1...-1...-1....0....0
		

Formula

Empirical: a(n) = 2*a(n-1) -a(n-2) +a(n-3) +a(n-4).
Empirical g.f.: x*(3 + 2*x + x^2)*(1 + 3*x^2 - 2*x^3 + x^4) / ((1 - x)^3*(1 + x + x^2)^2). - Colin Barker, Feb 15 2018

A201082 Number of -2..2 arrays of n elements with first and second differences also in -2..2.

Original entry on oeis.org

5, 19, 57, 175, 537, 1653, 5089, 15663, 48207, 148375, 456685, 1405633, 4326401, 13316243, 40986117, 126151337, 388281713, 1195093865, 3678384289, 11321714051, 34847150005, 107256185601, 330124252601, 1016090788147, 3127429995345
Offset: 1

Views

Author

R. H. Hardin, Nov 26 2011

Keywords

Comments

Column 2 of A201088.

Examples

			Some solutions for n=9:
..0....1....1...-2...-2...-1....2....2....0....2....0....0....0....1...-2....2
..0....0....0...-1....0....0....1....2...-1....2....1....1....2...-1...-2....2
.-1...-2....0...-1....0....0....0....1....0....0....0....0....2...-1...-1....2
.-1...-2....1...-1....0....0....1....1....1....0...-1....1....1....1....0....0
.-1....0....1...-1...-2...-2....0....2....2....1...-2....0....2....1....0....0
..0....0....2....0...-2...-2...-1....2....2....0...-1...-1....1....1...-1...-2
.-1...-1....1...-1...-1...-1...-2....2....2....1....0...-2...-1....1...-1...-2
.-1...-2....0...-1...-2....0...-1....0....1....1....0...-2...-1....0...-1...-1
..0...-2....1...-2...-2...-1...-2....0....0....1....0...-1....0....0....0....1
		

Formula

Empirical: a(n) = 3*a(n-1) +a(n-2) -2*a(n-3) -2*a(n-5) -4*a(n-6) +2*a(n-8) +a(n-9).
Empirical g.f.: x*(1 + x)*(5 - x - 4*x^2 - x^3 - 6*x^4 - 3*x^5 + 4*x^6 + 3*x^7) / (1 - 3*x - x^2 + 2*x^3 + 2*x^5 + 4*x^6 - 2*x^8 - x^9). - Colin Barker, Feb 15 2018

A201083 Number of -3..3 arrays of n elements with first and second differences also in -3..3.

Original entry on oeis.org

7, 37, 153, 651, 2771, 11817, 50391, 214867, 916173, 3906507, 16657167, 71025391, 302848889, 1291333199, 5506183213, 23478102983, 100109512887, 426862194475, 1820120064499, 7760905257671, 33092130346043, 141103267528637
Offset: 1

Views

Author

R. H. Hardin Nov 26 2011

Keywords

Comments

Column 3 of A201088.

Examples

			Some solutions for n=7
..0...-1...-2...-3....1....1...-3....3....2....0....0....2....2...-2....2....0
..0...-1....0...-3....0....2....0....1....3....3....3....1...-1...-2....2....1
.-1....2....3...-1....0....1....0...-1....2....3....3....1...-1...-1...-1....0
.-3....3....3....0....3....0...-1...-2....1....0....2....2...-1....2...-2....1
.-3....1....3....2....3...-2...-1....0....2....0....3....0....1....2...-1....0
.-2....1....0....1....3...-1....2....1....2....1....1...-2....0....2....2...-2
.-1....1...-3...-2....0....0....2....3....1....0....1...-2....2...-1....2...-2
		

Crossrefs

Cf. A201088.

Formula

Empirical: a(n) = 4*a(n-1) -a(n-2) +8*a(n-3) +4*a(n-4) +3*a(n-5) -2*a(n-6) -3*a(n-7) -7*a(n-8) -4*a(n-9) +7*a(n-10) +8*a(n-11) +3*a(n-12) -3*a(n-13) -2*a(n-14) +a(n-15) +2*a(n-16) +a(n-17).

A201084 Number of -4..4 arrays of n elements with first and second differences also in -4..4.

Original entry on oeis.org

9, 61, 323, 1759, 9593, 52401, 286207, 1563111, 8536807, 46623423, 254632457, 1390667451, 7595086541, 41480325457, 226543492197, 1237260160029, 6757257460559, 36904549131343, 201553034567103, 1100775560224471
Offset: 1

Views

Author

R. H. Hardin Nov 26 2011

Keywords

Comments

Column 4 of A201088

Examples

			Some solutions for n=6
..1...-3....3....2...-1....3...-2....3....0....4....4...-2....4....3....1....0
..1...-2...-1....0....1...-1....2...-1....1....3....4...-1....4....1....0....1
..1....0...-2...-2....4...-1....2...-2....2....0....3...-3....2...-2...-1....2
.-1....0...-1...-3....4....1....3...-2...-1...-3...-1...-4....3...-1...-4....1
..1....0....1....0....2....0....3....1...-3...-2...-1...-1....4...-1...-3....1
..1....0....1....0...-1....1....2....0...-4...-3....2....3....3...-3....0...-1
		

Formula

Empirical: a(n) = 6*a(n-1) -2*a(n-2) -9*a(n-3) +27*a(n-4) -25*a(n-5) -48*a(n-6) +46*a(n-7) -7*a(n-8) -47*a(n-9) +49*a(n-10) +54*a(n-11) -16*a(n-12) -21*a(n-13) +10*a(n-14) +21*a(n-15) +9*a(n-16) -11*a(n-17) -9*a(n-18) +2*a(n-19) +3*a(n-20) -5*a(n-22) -3*a(n-23) +2*a(n-24) -a(n-26)

A201085 Number of -5..5 arrays of n elements with first and second differences also in -5..5.

Original entry on oeis.org

11, 91, 587, 3899, 25935, 172767, 1150785, 7664735, 51049977, 340013811, 2264635877, 15083431015, 100461998355, 669119172909, 4456615247095, 29682932959083, 197700824478473, 1316770685524945, 8770246875470677
Offset: 1

Views

Author

R. H. Hardin Nov 26 2011

Keywords

Comments

Column 5 of A201088

Examples

			Some solutions for n=5
.-1....1....3....4....2...-3....0...-3....2....2...-2....2....0...-5...-4...-3
..2....5....4....1....1...-4....1....0....5....2....3....0....1...-3...-5...-4
..2....4....4...-1...-3...-4...-3....0....4....5....5...-1....1...-4...-2...-3
.-2....1....1...-5...-5....1...-4...-1....2....3....3....1....1....0....1...-3
.-3....0...-2...-4...-3....5...-3....1....1...-2...-2....1....4....5....3....2
		

Formula

Empirical: a(n) = 7*a(n-1) -6*a(n-2) +23*a(n-3) +13*a(n-4) -a(n-5) +2*a(n-6) -59*a(n-7) -102*a(n-8) -8*a(n-9) +92*a(n-10) +95*a(n-11) -18*a(n-12) -41*a(n-13) +36*a(n-14) +33*a(n-15) -49*a(n-16) -124*a(n-17) -69*a(n-18) +14*a(n-19) +88*a(n-20) +53*a(n-21) -18*a(n-22) -11*a(n-23) -2*a(n-24) -2*a(n-25) +8*a(n-26) +2*a(n-27) -10*a(n-28) -4*a(n-29) +8*a(n-30) +3*a(n-31) +2*a(n-32) +3*a(n-33) -a(n-34)

A201086 Number of -6..6 arrays of n elements with first and second differences also in -6..6.

Original entry on oeis.org

13, 127, 967, 7581, 59533, 468159, 3681179, 28943479, 227567727, 1789258703, 14068129953, 110611309721, 869686276975, 6837946387417, 53763653212357, 422719081839837, 3323647323173331, 26132322856122051, 205466534630289505
Offset: 1

Views

Author

R. H. Hardin, Nov 26 2011

Keywords

Comments

Column 6 of A201088.

Examples

			Some solutions for n=5
.-4....0...-6....3...-1....2....3....1...-3...-5...-1....3...-5...-3....6....0
.-2...-1....0....2....0....0...-2...-1...-3...-5....0...-3....0...-3....3...-5
..2...-5....3....4....0....2...-6...-2....3...-1....3...-5...-1....0....4...-6
..5...-6....0....1....2....3...-4....1....6...-2....0...-4....3....1....4...-4
..4...-4...-2....1....1....6...-4....5....5....2...-5...-4....1...-1....0...-6
		

Crossrefs

Cf. A201088.

Formula

Empirical: a(n) = 8*a(n-1) -14*a(n-3) +55*a(n-4) -58*a(n-5) -275*a(n-6) -13*a(n-7) +383*a(n-8) +435*a(n-9) +307*a(n-10) -386*a(n-11) -1187*a(n-12) -515*a(n-13) +895*a(n-14) +1171*a(n-15) +258*a(n-16) -717*a(n-17) -1121*a(n-18) -436*a(n-19) +947*a(n-20) +1146*a(n-21) -68*a(n-22) -827*a(n-23) -391*a(n-24) +230*a(n-25) +497*a(n-26) +139*a(n-27) -493*a(n-28) -458*a(n-29) +242*a(n-30) +498*a(n-31) +55*a(n-32) -279*a(n-33) -136*a(n-34) +58*a(n-35) +70*a(n-36) +5*a(n-37) -17*a(n-38) -2*a(n-39) +6*a(n-40) +a(n-41) -2*a(n-42) -2*a(n-43) for n>44.

A201087 Number of -7..7 arrays of n elements with first and second differences also in -7..7.

Original entry on oeis.org

15, 169, 1483, 13405, 121371, 1100401, 9975741, 90429601, 819732439, 7430807385, 67359774511, 610611788991, 5535153486929, 50175781165245, 454839969853999, 4123092739091885, 37375549329244061, 338806758784131711
Offset: 1

Views

Author

R. H. Hardin Nov 26 2011

Keywords

Comments

Column 7 of A201088

Examples

			Some solutions for n=4
.-6...-2...-2...-2...-4...-4....6....2....7....0....7....2....3...-4....3....0
.-6....3...-1...-1...-5...-5....5...-1....2....2....6....7...-1...-4....6...-1
..1....2...-3....0...-5...-3....1...-1...-3...-2....5....5....2....2....7...-2
..2...-2...-6....2...-2...-3...-4....3...-4...-3....6....7....3....4....4...-3
		

Formula

Empirical: a(n) = 9*a(n-1) -5*a(n-2) +38*a(n-3) +114*a(n-4) -2*a(n-5) +95*a(n-6) -19*a(n-7) -939*a(n-8) -482*a(n-9) +502*a(n-10) -1068*a(n-11) -59*a(n-12) +4668*a(n-13) +2468*a(n-14) -3545*a(n-15) -170*a(n-16) +1736*a(n-17) -6616*a(n-18) -4688*a(n-19) +6542*a(n-20) +2785*a(n-21) -5266*a(n-22) +595*a(n-23) +5562*a(n-24) +1303*a(n-25) -2419*a(n-26) -1843*a(n-27) +136*a(n-28) +845*a(n-29) +13*a(n-30) -1108*a(n-31) -394*a(n-32) +1467*a(n-33) +277*a(n-34) -1279*a(n-35) -39*a(n-36) +499*a(n-37) -358*a(n-38) -166*a(n-39) +499*a(n-40) +107*a(n-41) -216*a(n-42) +93*a(n-43) +202*a(n-44) -83*a(n-45) -170*a(n-46) +4*a(n-47) +71*a(n-48) -14*a(n-49) -46*a(n-50) -5*a(n-51) +13*a(n-52) +5*a(n-53) for n>55

A201089 Number of -n..n arrays of 4 elements with first and second differences also in -n..n.

Original entry on oeis.org

25, 175, 651, 1759, 3899, 7581, 13405, 22085, 34421, 51331, 73815, 102995, 140071, 186369, 243289, 312361, 395185, 493495, 609091, 743911, 899955, 1079365, 1284341, 1517229, 1780429, 2076491, 2408015, 2777755, 3188511, 3643241, 4144945, 4696785
Offset: 1

Views

Author

R. H. Hardin, Nov 26 2011

Keywords

Comments

Row 4 of A201088.

Examples

			Some solutions for n=8:
..3....6....5....5....5....1....7...-3....3....6...-5....0....1...-8....4...-5
..0....6...-1....5....0....0...-1....0....6....7...-4....2....0...-4....6...-3
..2...-1...-6....7....2...-3...-7....1....7....3...-4....1...-5....1....2...-3
..7...-2...-5....6...-2...-2...-8...-5....0....6....2...-3...-8....1....3...-7
		

Formula

Empirical: a(n) = 3*a(n-1) -a(n-2) -5*a(n-3) +5*a(n-4) +a(n-5) -3*a(n-6) +a(n-7).
Empirical: -x*(25+100*x+151*x^2+106*x^3+23*x^4-2*x^5+x^6) / ( (1+x)^2*(x-1)^5 ). - R. J. Mathar, Nov 27 2011
Conjectures from Colin Barker, Feb 14 2018: (Start)
a(n) = (101*n^4 + 202*n^3 + 190*n^2 + 92*n + 24) / 24 for n even.
a(n) = (101*n^4 + 202*n^3 + 190*n^2 + 86*n + 21) / 24 for n odd.
(End)

A201090 Number of -n..n arrays of 5 elements with first and second differences also in -n..n.

Original entry on oeis.org

47, 537, 2771, 9593, 25935, 59533, 121371, 226521, 394443, 649989, 1023515, 1552101, 2279419, 3257221, 4544919, 6211381, 8334179, 11001745, 14312231, 18376077, 23314439, 29262209, 36365967, 44787505, 54701247, 66298329, 79783443
Offset: 1

Views

Author

R. H. Hardin Nov 26 2011

Keywords

Comments

Row 5 of A201088

Examples

			Some solutions for n=6
..0....1....3....5....2...-1....6...-2...-1...-4....5....2....6....5....4....5
..4....0....0....2....3...-2....3....0...-5...-4....0...-3....0....2....2....1
..5...-1....0...-3...-1...-4....0...-1...-6...-6....0...-3...-2....1....1...-2
..2....3...-3...-4....1...-2....2...-1...-3...-4....0....1...-3....4...-3...-1
.-4....4...-4...-1....6...-6....5....1....1....0....0....5...-1....5...-2....4
		

Formula

Empirical: a(n) = 2*a(n-1) +2*a(n-2) -5*a(n-3) -2*a(n-4) +4*a(n-5) +4*a(n-6) -2*a(n-7) -5*a(n-8) +2*a(n-9) +2*a(n-10) -a(n-11).
Empirical: -x*(-47 -443*x -1603*x^2 -3212*x^3 -3986*x^4 -3218*x^5 -1606*x^6 -436*x^7 -47*x^8 -3*x^9 +x^10) / ( (1+x+x^2)*(1+x)^3*(x-1)^6 ). - R. J. Mathar, Nov 27 2011

A201091 Number of -n..n arrays of 6 elements with first and second differences also in -n..n.

Original entry on oeis.org

89, 1653, 11817, 52401, 172767, 468159, 1100401, 2326467, 4525989, 8241301, 14210297, 23419633, 37141027, 56999737, 85011997, 123671261, 175984071, 245577021, 336727861, 454496567, 604748137, 794311497, 1030990023, 1323752505
Offset: 1

Views

Author

R. H. Hardin Nov 26 2011

Keywords

Comments

Row 6 of A201088

Examples

			Some solutions for n=4
..0...-4....1...-1....3....1....0....1....0....1....0...-1...-4....3....1....4
..3...-2....4....0....2...-1....0....0...-1....3....2....0...-4....1....2....1
..4....0....4...-1....2...-4...-2....0...-2....2....2....1...-2....0....2....0
..2....0....2...-2....3...-3...-2....0....1....3...-1....2...-2...-1....3....0
..1....1....2....0....2...-4...-2....2....1....2...-2....1...-1....1....4...-1
.-3....4....4....1....0...-2....2....0....0....4....0....1....2....3....1...-2
		

Formula

Empirical: a(n) = 3*a(n-2) +2*a(n-3) -2*a(n-4) -5*a(n-5) -3*a(n-6) +a(n-7) +4*a(n-8) +6*a(n-9) +3*a(n-10) -3*a(n-11) -6*a(n-12) -4*a(n-13) -a(n-14) +3*a(n-15) +5*a(n-16) +2*a(n-17) -2*a(n-18) -3*a(n-19) +a(n-21)
Showing 1-10 of 11 results. Next