cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A201089 Number of -n..n arrays of 4 elements with first and second differences also in -n..n.

Original entry on oeis.org

25, 175, 651, 1759, 3899, 7581, 13405, 22085, 34421, 51331, 73815, 102995, 140071, 186369, 243289, 312361, 395185, 493495, 609091, 743911, 899955, 1079365, 1284341, 1517229, 1780429, 2076491, 2408015, 2777755, 3188511, 3643241, 4144945, 4696785
Offset: 1

Views

Author

R. H. Hardin, Nov 26 2011

Keywords

Comments

Row 4 of A201088.

Examples

			Some solutions for n=8:
..3....6....5....5....5....1....7...-3....3....6...-5....0....1...-8....4...-5
..0....6...-1....5....0....0...-1....0....6....7...-4....2....0...-4....6...-3
..2...-1...-6....7....2...-3...-7....1....7....3...-4....1...-5....1....2...-3
..7...-2...-5....6...-2...-2...-8...-5....0....6....2...-3...-8....1....3...-7
		

Formula

Empirical: a(n) = 3*a(n-1) -a(n-2) -5*a(n-3) +5*a(n-4) +a(n-5) -3*a(n-6) +a(n-7).
Empirical: -x*(25+100*x+151*x^2+106*x^3+23*x^4-2*x^5+x^6) / ( (1+x)^2*(x-1)^5 ). - R. J. Mathar, Nov 27 2011
Conjectures from Colin Barker, Feb 14 2018: (Start)
a(n) = (101*n^4 + 202*n^3 + 190*n^2 + 92*n + 24) / 24 for n even.
a(n) = (101*n^4 + 202*n^3 + 190*n^2 + 86*n + 21) / 24 for n odd.
(End)