A201144 The pebble sequence: a(n) is the length of the longest non-repeating sequence of pebble-moves among the partitions of n.
1, 2, 3, 5, 6, 7, 8, 9, 11, 13, 13, 13, 14, 19, 21, 21, 18, 19, 22, 29, 31, 31, 25, 25, 26, 33, 41, 43, 43, 36, 32, 33, 37, 46, 55, 57, 57, 49, 41, 41, 42, 51, 61, 71, 73, 73, 64, 55, 50, 51, 56, 67, 78, 89, 91, 91, 81, 71, 61, 61, 62, 73, 85, 97, 109, 111, 111, 100, 89, 78, 72, 73, 79, 92, 105, 118, 131, 133, 133, 121, 109, 97, 85, 85, 86, 99, 113, 127, 141, 155, 157, 157, 144, 131, 118, 105, 98, 99, 106, 121
Offset: 1
Keywords
Examples
For example, for n = 6, the worst case is {2,2,1,1}, and the steps are: {2, 2, 1, 1}, {1, 1, 4}, {3, 3}, {2, 2, 2}, {1, 1, 1, 3}, {2, 4}, {1, 2, 3}, {1, 2, 3}, {1, 2, 3}, {1, 2, 3}, {1, 2, 3}. Hence a(6) = 7.
Links
- Jorgen Brandt, Cycles of Partitions, Proc. AMS, Vol. 85, No. 3 (July, 1982), pp. 483-486
- Tanya Khovanova and others, Postings to the Sequence Fans Mailing List, circa Nov 18 2009
Crossrefs
Programs
-
Mathematica
In[33]:= << Combinatorica` step[list_] := Sort[Select[Prepend[list - 1, Length[list]], # > 0 &]] cycleStart[list_] := (res = 1; sofar = {list}; current = list; nextStep = Nest[step, current, 1]; While[! MemberQ[sofar, nextStep], res++; current = nextStep; nextStep = Nest[step, current, 1]; sofar = Append[sofar, current]]; res) Table[Max[Map[cycleStart, Partitions[n]]], {n, 30}] Out[36]= {1, 2, 3, 5, 6, 7, 8, 9, 11, 13, 13, 13, 14, 19, 21, 21, 18, 19, 22, 29, 31, 31, 25, 25, 26, 33, 41, 43, 43, 36}
Comments