cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A201149 Number of nX2 0..2 arrays with every diagonal, row and column running average nondecreasing rightwards and downwards and diagonally.

This page as a plain text file.
%I A201149 #7 Jul 22 2025 16:07:32
%S A201149 6,20,56,140,330,745,1634,3504,7388,15366,31612,64446,130391,262113,
%T A201149 523984,1042433,2065098,4075761,8017395,15724110,30756544,60014931,
%U A201149 116849951,227054267,440389499,852738289,1648633351,3182830233
%N A201149 Number of nX2 0..2 arrays with every diagonal, row and column running average nondecreasing rightwards and downwards and diagonally.
%C A201149 Column 2 of A201155
%H A201149 R. H. Hardin, <a href="/A201149/b201149.txt">Table of n, a(n) for n = 1..210</a>
%F A201149 Empirical: a(n) = 7*a(n-1) -16*a(n-2) +4*a(n-3) +39*a(n-4) -56*a(n-5) +2*a(n-6) +59*a(n-7) -49*a(n-8) -5*a(n-9) +29*a(n-10) -14*a(n-11) -2*a(n-12) +4*a(n-13) -a(n-14)
%e A201149 Some solutions for n=10
%e A201149 ..0..1....0..0....0..0....0..0....0..0....0..0....0..1....0..1....0..0....0..0
%e A201149 ..0..1....0..0....0..0....0..0....0..0....0..2....0..1....0..1....0..0....0..0
%e A201149 ..0..2....0..0....1..2....0..2....0..2....0..1....0..1....0..2....0..0....0..0
%e A201149 ..1..2....0..2....2..2....0..1....0..2....1..1....0..1....0..2....0..1....0..1
%e A201149 ..2..2....0..2....1..2....0..1....1..2....1..2....2..2....1..2....0..1....0..2
%e A201149 ..1..2....0..2....2..2....1..1....1..2....1..2....1..2....1..2....0..1....0..2
%e A201149 ..1..2....1..1....1..2....1..2....1..2....1..2....2..2....1..2....0..2....0..2
%e A201149 ..1..2....1..1....2..2....1..2....1..2....1..2....2..2....2..2....0..1....1..1
%e A201149 ..1..2....1..2....2..2....2..2....1..2....1..2....1..2....2..2....1..1....1..1
%e A201149 ..2..2....1..2....2..2....1..2....2..2....2..2....1..2....2..2....1..2....2..2
%K A201149 nonn
%O A201149 1,1
%A A201149 _R. H. Hardin_ Nov 27 2011