This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A201157 #30 Apr 15 2022 23:40:02 %S A201157 0,5,15,40,105,275,720,1885,4935,12920,33825,88555,231840,606965, %T A201157 1589055,4160200,10891545,28514435,74651760,195440845,511670775, %U A201157 1339571480,3507043665,9181559515,24037634880,62931345125,164756400495,431337856360,1129257168585 %N A201157 y-values in the solution to 5*x^2 - 20 = y^2. %C A201157 Except a(1), the same as A054888. - _R. J. Mathar_, Nov 28 2011 %H A201157 Michael De Vlieger, <a href="/A201157/b201157.txt">Table of n, a(n) for n = 1..2392</a> %H A201157 Hacène Belbachir, Soumeya Merwa Tebtoub, and László Németh, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL23/Nemeth/nemeth7.html">Ellipse Chains and Associated Sequences</a>, J. Int. Seq., Vol. 23 (2020), Article 20.8.5. %H A201157 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (3,-1). %F A201157 a(n) = 3*a(n-1) - a(n-2), n>2. %F A201157 G.f.: 5*x^2 / (x^2 - 3*x + 1). - _Colin Barker_, Apr 08 2013 %F A201157 a(n) = 5*Fibonacci(2*n-2) = Lucas(2*n-1) + Lucas(2*n-3) with Lucas(-1) = -1. - _Bruno Berselli_, Feb 15 2017 %F A201157 a(n) = Lucas(n)^2 - Lucas(n-2)^2. - _Greg Dresden_, Apr 15 2022 %e A201157 15 is in the sequence because 15^2 = 5*7^2 - 20. %t A201157 LinearRecurrence[{3, -1}, {0, 5}, 50] %Y A201157 Cf. A000032, A005248. %K A201157 nonn,easy %O A201157 1,2 %A A201157 _Sture Sjöstedt_, Nov 27 2011 %E A201157 More terms from _Colin Barker_, Apr 08 2013