cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A201199 Triangle version of the array w(N,L) of the total number of round trips of length L on closed Laguerre graphs Lc_N.

This page as a plain text file.
%I A201199 #12 Aug 27 2019 23:34:02
%S A201199 1,1,2,1,4,3,1,18,9,4,1,76,53,16,5,1,322,357,120,25,6,1,1364,2489,
%T A201199 1024,233,36,7,1,5778,17509,9424,2545,404,49,8,1,24476,123449,89536,
%U A201199 29985,5400,645,64,9,1,103682,870893,862560,367505,78392,10213,968,81,10
%N A201199 Triangle version of the array w(N,L) of the total number of round trips of length L on closed Laguerre graphs Lc_N.
%C A201199 For Laguerre graphs (open and closed ones) see the W. Lang link on Jacobi graphs under A201198. There one also finds a sketch of the closed Laguerre graph Lc_4 as Fig.4.
%C A201199 The total number of round trips on the closed Laguerre graph Lc_N, for N>=3, with N vertices N^2 loops, binomial(N,2) lines between neighboring vertices and two lines between the first and the last vertex (in total (3*N-1)*N/2+2 = (3*N^2-N+4)/2  lines) is w(N,L) = sum(w(N,L;p_n->p_n),n=1..N) =  Trace((L_N)^L) = sum((x_n^{(N)})^L,n=1..N), with the N x N  symmetric adjacency matrix, also called  Lc_N, having non-vanishing elements (Lc_N)[n,n] = 2*n-1, n=1..N, (Lc_N)[n,n+1] = (Lc_N)[n+1,n] = n, n=1..N-1, and (Lc_N)[1,N]= 2=(Lc_N)[N,1].  The eigenvalues of Lc_N are x_n^{(N)}. They are the  zeros of the characteristic polynomial Lac_N(x):=Det(x*1_N -Lc_N) with the N x N unit matrix 1_N. These are the polynomials Lac_N(x) = La(N,x) - 4*La1(N-2,x) - 4*(N-1)!, with the ordinary monic Laguerre polynomials La(N,x) with coefficient array given by A021009(n,m)*(-1)^n  and the first associated monic Laguerre polynomials La1(N-2,x) with coefficient array given by A199577(n,m).  For N=1 one has  Lc_1=L_1 (Laguerre graph with one vertex and one loop) with L_1(x)=x-1, and for N=2 one has a graph where one vertex has one loop, the other three, and there are two lines joining these vertices, hence Lc_2(x)= x^2-4*x-1.
%H A201199 Wolfdieter Lang, <a href="/A201198/a201198_1.pdf">Counting walks on Jacobi graphs: an application of orthogonal polynomials.</a>
%F A201199 a(K,N) =  w(N,K-N+1),K>=0, N=1,...,K+1, with w(N,L) the total number of round trips of length L on the closed Laguerre graph Lc_N described above in the comment section.
%F A201199 The o.g.f. of w(N,L) is: G(N,x)=y*(d/dx)Lac_N(x)/Lac_N(x) with y=1/x.
%F A201199   The characteristic polynomial Lac_N(x) has also been given in the comment section above.
%e A201199 The array w(N,L) starts:
%e A201199 N\L 0   1    2     3      4        5         6  ...
%e A201199 1:  1   1    1     1      1        1         1
%e A201199 2:  2   4   12    40    136      464      1584
%e A201199 3:  3   9   53   357   2489    17509    123449
%e A201199 4:  4  16  120  1024   9424    89536    862560
%e A201199 5:  5  25  233  2545  29985   367505   4599521
%e A201199 6:  6  36  404  5400  78392  1188336  18460016
%e A201199 7:  7  49  645 10213 176473  3195829  59473593
%e A201199 8:  8  64  968 17728 355536  7493504 162671840
%e A201199 9:  9  81 1385 28809 657953 15826041 392792273
%e A201199 ...The triangle a(K,N) = w(N,K-N+1) starts:
%e A201199 K\N 1      2       3      4      5     6     7   8  9..
%e A201199 0:  1
%e A201199 1:  1      2
%e A201199 2:  1      4       3
%e A201199 3:  1     18       9      4
%e A201199 4:  1     76      53     16      5
%e A201199 5:  1    322     357    120     25     6
%e A201199 6:  1   1364    2489   1024    233    36     7
%e A201199 7:  1   5778   17509   9424   2545   404    49   8
%e A201199 8:  1  24476  123449  89536  29985  5400   645  64  9
%e A201199 ...
%e A201199 For the graph Lc_4, shown in the W. Lang link as Figure 4, the counting for round trips of length L=2 for each of the four vertices V_i, i=1..4, read from left to right, is as follows.
%e A201199 V_1: 1+1+(1+1+2*1), V_2: 3+2*binomial(3,2)+1+(1+1+2*1),
%e A201199 V_3: 5+2*binomial(5,2)+(1+1+2*1)+(3+2*binomial(3,2)),
%e A201199 V_4: 7+2*binomial(7,2)+(3+2*binomial(3,2))+(1+1+2*1),
%e A201199 this sums to the total number  w(4,2)= 120  =  a(5,4).
%e A201199 Compared to the open L_4 graph (see the corresponding A201198 entry 4*28 = 112) one has to add 2*(1+1+2*1)=8 from the new two lines joining V_1 and V_4.
%Y A201199 Cf. A201198 (open Laguerre graphs).
%K A201199 nonn,easy,walk,tabl
%O A201199 0,3
%A A201199 _Wolfdieter Lang_, Nov 30 2011