A201201 Coefficient triangle for the monic associated Laguerre-Sonin(e) polynomials of order one for parameter alpha=1.
1, -4, 1, 18, -10, 1, -96, 86, -18, 1, 600, -756, 246, -28, 1, -4320, 7092, -3168, 552, -40, 1, 35280, -71856, 41112, -9720, 1070, -54, 1, -322560, 787824, -552240, 165720, -24600, 1878, -70, 1, 3265920, -9329760, 7768080, -2835360, 531480, -54516, 3066, -88
Offset: 0
Examples
The triangle begins: n\k 0 1 2 3 4 5 6 7 ... 0: 1 1: -4 1 2: 18 -10 1 3: -96 86 -18 1 4: 600 -756 246 -28 1 5: -4320 7092 -3168 552 -40 1 6: 35280 -71856 41112 -9720 1070 -54 1 7:-322560 787824 -552240 165720 -24600 1878 -70 1 ...
References
- M. E. H. Ismail (two chapters by W. Van Assche), Classical and Quantum Orthogonal Polynomials in One Variable, Cambridge University Press, 2005.
Programs
-
Maple
La := proc(n,x) option remember; if n= -1 then 0; elif n = 0 then 1; else (x-2*n-2)*procname(n-1,x)-n*(n+1)*procname(n-2,x) ; end if; end proc: A201201 := proc(n,k) coeftayl( La(n,x),x=0,k) ; end proc: seq(seq(A201201(n,k),k=0..n),n=0..12) ; # R. J. Mathar, Dec 07 2011
-
Mathematica
a[n_, k_] := (-1)^(n-k)*((n+1)*(n+1)!/((k+1)*(k+1)!))*Binomial[n, k]*HypergeometricPFQ[{-(n-k), k, 1}, {-(n+1), k+2}, 1]; Table[a[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 21 2013 *)
Formula
a(n,k)=[x^k] La_n(1;1,x), n>=0, k=0,...,n.
a(n,k)= (-1)^(n-k)*((n+1)*(n+1)!/((k+1)*(k+1)!))*
binomial(n,k)*hypergeom(-(n-k),k,1; -(n+1),k+2; 1), 0<=k<=n. [Ismail, p. 161, eq. (5.6.18)].
The e.g.f. gLa(1;1,z,x) for La_n(1;1,x) is exp(-x/(1+z))*x*(x-2*(1+z))*(Ei(1,-x/(1+z)) - Ei(1,-x))/(1+z)^4 + exp(x*z/(1+z))*(-x+2*(1+z))/(1+z)^4 +(1+z+x)/(1+z)^3 -2/(1+z)^2, with the exponential integral Ei.
The e.g.f. gLa(1;1,z,x) for the Euler-derivative
x*(d/dx) La_n(1;1,x) is x*exp(-x/(1+z))*(2*(1+z)-x)*
(Ei(1,-x/(1+z)) - Ei(1,-x))/(1+z)^4 + (1+z-x)*(1-exp(x*z/(1+z)))/(1+z)^3.
From this follows La_n(1;1,x) = (n+1)*La_n(1,x) -
x*(d/dx)La_n(1;0,x). For La_n(1;0,x) see A199577 where it is called La_n(1;x).
Comments