This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A201227 #28 Mar 04 2016 07:04:19 %S A201227 219375,4566375,82569375,1482276375,26598999375,477300306375, %T A201227 8564807109375,153689228256375,2757841302099375,49487454210126375, %U A201227 888016334480769375,15934806566444316375,285938501861517519375,5130958226940871626375,92071309583074172349375 %N A201227 a(n) = (A201225(n))^3 - (A201226(n))^2. %C A201227 Values d of solutions (x,y,d) of x^3-y^2 = d with decreasing coefficient r=sqrt(x)/d which r tend to 1/(1350*sqrt(5)) when d tends to infinity. %C A201227 Also infinity family of solutions Mordell curve with extension sqrt(5) (another than A200218). %C A201227 Conjecture: No more infinite families of solutions Mordell curves with extension sqrt(5) than A201227 and A200218. %C A201227 Ratio a(n+1)/a(n) tends to 9+4*sqrt(5) when n tends to infinity. %C A201227 Because all values in this sequence are positive, it means that A201225, A201226 and A201227 are even indexes subset of another sequence. %H A201227 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (19, -19, 1). %F A201227 a(n) = (A201225(n))^3 - (A201226(n))^2. %F A201227 a(n) = 19*a(n-1) - 19*a(n-2) + a(n-3). %F A201227 G.f.: x*(3375*(-65-118*x+7*x^2))/((-1+x)*(1-18*x+x^2)). %F A201227 a(n) = 3375*(-11-(-2+sqrt(5))*(9+4*sqrt(5))^(-n)+(2+sqrt(5))*(9+4*sqrt(5))^n). - _Colin Barker_, Mar 03 2016 %t A201227 LinearRecurrence[{19,-19,1},{219375,4566375,82569375},30] (* _Harvey P. Dale_, Sep 25 2012 *) %K A201227 nonn %O A201227 1,1 %A A201227 _Artur Jasinski_, Nov 28 2011