cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A201238 Number of ways to place 4 non-attacking wazirs on an n X n toroidal board.

This page as a plain text file.
%I A201238 #13 Jan 20 2017 23:35:42
%S A201238 0,0,0,228,3850,27225,122892,423152,1213380,3046025,6907890,14454972,
%T A201238 28330822,52586065,93218400,158854080,261593552,418045617,650576150,
%U A201238 988799100,1471339170,2147897257,3081651412,4352027760,6057877500,8321097785,11290735962
%N A201238 Number of ways to place 4 non-attacking wazirs on an n X n toroidal board.
%C A201238 Wazir is a leaper [0,1].
%H A201238 V. Kotesovec, <a href="https://oeis.org/wiki/User:Vaclav_Kotesovec">Non-attacking chess pieces</a>, 6ed, p.402
%F A201238 a(n) = n^2*(n^2-11)*(n^4 - 19n^2 + 114)/24, n>=5.
%F A201238 G.f.: x^4 * (8x^9 - 54x^8 + 189x^7 - 551x^6 + 1404x^5 - 2552x^4 + 2685x^3 - 783x^2 - 1798x - 228)/(x-1)^9.
%t A201238 CoefficientList[Series[x^3*(8 x^9 - 54 x^8 + 189 x^7 - 551 x^6 + 1404 x^5 - 2552 x^4 + 2685 x^3 - 783 x^2 - 1798 x - 228)/(x - 1)^9, {x, 0, 20}], x] (* _Wesley Ivan Hurt_, Jan 19 2017 *)
%Y A201238 Cf. A172227, A201236, A201237, A201239, A201240, A201241, A201242.
%K A201238 nonn,easy
%O A201238 1,4
%A A201238 _Vaclav Kotesovec_, Nov 28 2011