This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A201266 #12 Feb 22 2025 20:04:04 %S A201266 9,16,16,27,49,22,26,81,32,125,32,81,32,81,125,81,32,32,169,81,37,343, %T A201266 41,289,43,87,343,93,47,361,53,111,529,59,343,61,123,129,361,64,141, %U A201266 64,1331,625,64,625,64,159,529,64,177,64,183,625,1331,64,201,64 %N A201266 The seventh divisor of numbers with exactly 49 divisors. %H A201266 Reinhard Zumkeller, <a href="/A201266/b201266.txt">Table of n, a(n) for n = 1..1000</a> %e A201266 a(1) = A114334(7); %e A201266 a(2) = A159765(7). %o A201266 (Haskell) %o A201266 a201266 n = [d | d <- [1..], a175755 n `mod` d == 0] !! 6 %o A201266 (Python) %o A201266 from math import isqrt %o A201266 from sympy import primepi, integer_nthroot, primerange, divisors %o A201266 def A201266(n): %o A201266 def bisection(f,kmin=0,kmax=1): %o A201266 while f(kmax) > kmax: kmax <<= 1 %o A201266 kmin = kmax >> 1 %o A201266 while kmax-kmin > 1: %o A201266 kmid = kmax+kmin>>1 %o A201266 if f(kmid) <= kmid: %o A201266 kmax = kmid %o A201266 else: %o A201266 kmin = kmid %o A201266 return kmax %o A201266 def f(x): return int(n+x+(t:=primepi(s:=isqrt(y:=integer_nthroot(x,6)[0])))+(t*(t-1)>>1)-sum(primepi(y//k) for k in primerange(1, s+1))-primepi(integer_nthroot(x,48)[0])) %o A201266 return divisors(bisection(f,n,n))[6] # _Chai Wah Wu_, Feb 22 2025 %Y A201266 Cf. A175755, A135581. %K A201266 nonn %O A201266 1,1 %A A201266 _Reinhard Zumkeller_, Nov 29 2011