cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A201269 Coordinates y of points {x,y} of Mordell elliptic curves x^3-y^2 for primary extremal points with quadratic extensions over rationals.

This page as a plain text file.
%I A201269 #12 Mar 31 2012 10:22:18
%S A201269 85580,154396,240004,476425,767125,2555956,5518439,28748141,37172564,
%T A201269 40080716,46823500,54615700,80311375,96251275,436925600,1304261335,
%U A201269 1394880175,1526959675,1636213375,1839881024,2212438625,2442495725,2716194871,2976815179,3155294924
%N A201269 Coordinates y of points {x,y} of Mordell elliptic curves x^3-y^2 for primary extremal points with quadratic extensions over rationals.
%C A201269 For x coordinates see A201047.
%C A201269 For distances d between cubes and squares see A201268.
%C A201269 For successive quadratic extensions see A201278.
%C A201269 Theorem (*Artur Jasinski*):
%C A201269 Every particular coordinate y contained only one extremal point.
%C A201269 Proof (*Artur Jasinski*): Coordinate x is computable from the formula x(y) = round(y^(2/3)) and distance d between cube of x and square of y is computable from the formula d(y) = round(y^(2/3))^3-y^2.
%F A201269 a(n) = sqrt(A201047(n)^3-A201268(n)).
%Y A201269 Cf. A200217, A201047, A201268.
%K A201269 nonn
%O A201269 1,1
%A A201269 _Artur Jasinski_, Nov 29 2011