This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A201280 #25 Jan 30 2025 15:45:18 %S A201280 6,2,3,8,9,9,5,6,0,5,8,0,9,0,3,4,4,3,6,3,9,9,0,3,2,9,3,9,4,6,3,2,4,4, %T A201280 2,6,4,4,2,7,6,1,7,2,0,3,1,5,6,6,7,3,6,5,2,8,8,4,4,3,7,9,0,4,7,1,8,2, %U A201280 8,0,2,1,3,1,8,5,4,3,4,2,6,6,8,5,9,8,1,6,4,7,7,3,1,9,4,3,1,2,4 %N A201280 Decimal expansion of x satisfying x^2 + 1 = cot(x) and 0 < x < Pi. %C A201280 For many choices of a and c, there is exactly one x satisfying a*x^2 + c = cot(x) and 0 < x < Pi. %C A201280 Guide to related sequences, with graphs included in Mathematica programs: %C A201280 a.... c.... x %C A201280 1.... 1.... A201280 %C A201280 1.... 2.... A201281 %C A201280 1.... 3.... A201282 %C A201280 1.... 4.... A201283 %C A201280 1.... 5.... A201284 %C A201280 1.... 6.... A201285 %C A201280 1.... 7.... A201286 %C A201280 1.... 8.... A201287 %C A201280 1.... 9.... A201288 %C A201280 1.... 10... A201289 %C A201280 1.... 0.... A201294 %C A201280 1... -1.... A201295 %C A201280 1... -2.... A201296 %C A201280 1... -3.... A201297 %C A201280 1... -4.... A201298 %C A201280 1... -5.... A201299 %C A201280 1... -6.... A201315 %C A201280 1... -7.... A201316 %C A201280 1... -8.... A201317 %C A201280 1... -9.... A201318 %C A201280 1.. -10.... A201319 %C A201280 2.... 0.... A201329 %C A201280 3.... 0.... A201330 %C A201280 4.... 0.... A201331 %C A201280 5.... 0.... A201332 %C A201280 6.... 0.... A201333 %C A201280 7.... 0.... A201334 %C A201280 8.... 0.... A201335 %C A201280 9.... 0.... A201336 %C A201280 10... 0.... A201337 %C A201280 2... -1.... A201320 %C A201280 3... -1.... A201321 %C A201280 4... -1.... A201322 %C A201280 5... -1.... A201323 %C A201280 6... -1.... A201324 %C A201280 7... -1.... A201325 %C A201280 8... -1.... A201326 %C A201280 9... -1.... A201327 %C A201280 10.. -1.... A201328 %C A201280 2.... 1.... A201290 %C A201280 2.... 3.... A201291 %C A201280 2... -3.... A201394 %C A201280 3.... 1.... A201292 %C A201280 3.... 2.... A201293 %C A201280 3... -2.... A201395 %C A201280 Suppose that f(x,u,v) is a function of three real variables and that g(u,v) is a function defined implicitly by f(g(u,v),u,v)=0. We call the graph of z=g(u,v) an implicit surface of f. %C A201280 For an example related to A201280, take f(x,u,v) = u*x^2 - v - cot(x) and g(u,v) = a nonzero solution x of f(x,u,v)=0. If there is more than one nonzero solution, care must be taken to ensure that the resulting function g(u,v) is single-valued and continuous. A portion of an implicit surface is plotted by Program 2 in the Mathematica section. %H A201280 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>. %e A201280 0.62389956058090344363990329394632442... %t A201280 (* Program 1: A201280 *) %t A201280 a = 1; c = 1; %t A201280 f[x_] := a*x^2 + c; g[x_] := Cot[x] %t A201280 Plot[{f[x], g[x]}, {x, 0, Pi}, {AxesOrigin -> {0, 0}}] %t A201280 r = x /. FindRoot[f[x] == g[x], {x, .62, .63}, WorkingPrecision -> 110] %t A201280 RealDigits[r] (* A201280 *) %t A201280 (* Program 2: implicit surface of u*x^2-v=cot(x) *) %t A201280 f[{x_, u_, v_}] := u*x^2 - v - Cot[x]; %t A201280 t = Table[{u, v, x /. FindRoot[f[{x, u, v}] == 0, {x, .001, Pi}]}, {u, 0, 5, .1}, {v, 0, 5, .1}]; %t A201280 ListPlot3D[Flatten[t, 1]] (* for A201280 *) %Y A201280 Cf. A200614. %K A201280 nonn,cons %O A201280 0,1 %A A201280 _Clark Kimberling_, Nov 29 2011 %E A201280 Edited and a(90) onwards corrected by _Georg Fischer_, Aug 03 2021