cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A201284 Decimal expansion of x satisfying x^2 + 5 = cot(x) and 0 < x < Pi.

This page as a plain text file.
%I A201284 #11 Jan 30 2025 15:47:23
%S A201284 1,9,5,9,2,9,8,9,9,2,6,5,4,6,2,6,3,2,1,8,1,1,5,5,3,5,3,8,3,4,7,7,4,0,
%T A201284 8,3,6,0,2,9,6,9,6,9,5,4,0,1,3,5,8,3,3,8,6,6,5,2,7,3,8,6,1,2,6,7,2,9,
%U A201284 6,6,1,9,1,1,9,7,4,9,7,1,4,2,2,7,4,2,0,3,9,8,9,4,6,8,0,0,5,3,1
%N A201284 Decimal expansion of x satisfying x^2 + 5 = cot(x) and 0 < x < Pi.
%C A201284 See A201280 for a guide to related sequences. The Mathematica program includes a graph.
%H A201284 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>.
%e A201284 0.1959298992654626321811553538347740836029...
%t A201284 a = 1; c = 5;
%t A201284 f[x_] := a*x^2 + c; g[x_] := Cot[x]
%t A201284 Plot[{f[x], g[x]}, {x, 0, Pi/2}, {AxesOrigin -> {0, 0}}]
%t A201284 r = x /. FindRoot[f[x] == g[x], {x, .1, .2}, WorkingPrecision -> 110]
%t A201284 RealDigits[r]   (* A201284 *)
%Y A201284 Cf. A201280.
%K A201284 nonn,cons
%O A201284 0,2
%A A201284 _Clark Kimberling_, Nov 29 2011