cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A201285 Decimal expansion of x satisfying x^2 + 6 = cot(x) and 0 < x < Pi.

This page as a plain text file.
%I A201285 #16 Jan 30 2025 15:47:05
%S A201285 1,6,4,4,2,1,2,0,9,0,5,0,2,9,5,4,7,0,9,4,1,5,2,9,9,9,5,0,6,8,4,2,9,6,
%T A201285 1,7,2,8,4,9,7,1,8,1,9,5,7,2,0,0,9,7,1,9,5,2,1,1,9,3,7,0,0,4,9,2,3,5,
%U A201285 1,6,7,5,6,3,5,5,2,3,7,7,9,4,9,1,3,0,0,7,5,3,6,1,2,5,5,4,4,6,6
%N A201285 Decimal expansion of x satisfying x^2 + 6 = cot(x) and 0 < x < Pi.
%C A201285 See A201280 for a guide to related sequences. The Mathematica program includes a graph.
%H A201285 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>.
%e A201285 0.16442120905029547094152999506842961...
%t A201285 a = 1; c = 6;
%t A201285 f[x_] := a*x^2 + c; g[x_] := Cot[x]
%t A201285 Plot[{f[x], g[x]}, {x, 0, Pi/2}, {AxesOrigin -> {0, 0}}]
%t A201285 r = x /. FindRoot[f[x] == g[x], {x, .1, .2}, WorkingPrecision -> 110]
%t A201285 RealDigits[r]    (* A201285 *)
%Y A201285 Cf. A201280.
%K A201285 nonn,cons
%O A201285 0,2
%A A201285 _Clark Kimberling_, Nov 29 2011
%E A201285 Offset and a(83) onwards corrected by _Georg Fischer_, Aug 03 2021