cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A201287 Decimal expansion of x satisfying x^2 + 8 = cot(x) and 0 < x < Pi.

This page as a plain text file.
%I A201287 #10 Jan 30 2025 15:47:10
%S A201287 1,2,4,1,1,8,4,3,7,1,3,0,1,3,1,7,6,5,2,3,8,5,3,9,4,2,3,1,8,7,7,4,2,1,
%T A201287 1,4,1,4,0,4,6,1,4,5,1,4,6,6,1,9,0,6,0,0,3,0,6,0,7,0,1,1,8,3,6,3,2,8,
%U A201287 7,3,4,2,8,2,1,4,1,6,2,4,7,0,2,3,9,3,1,2,4,4,5,6,9,2,1,1,0,4,4
%N A201287 Decimal expansion of x satisfying x^2 + 8 = cot(x) and 0 < x < Pi.
%C A201287 See A201280 for a guide to related sequences. The Mathematica program includes a graph.
%H A201287 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>.
%e A201287 0.124118437130131765238539423187742114...
%t A201287 a = 1; c = 8;
%t A201287 f[x_] := a*x^2 + c; g[x_] := Cot[x]
%t A201287 Plot[{f[x], g[x]}, {x, 0, Pi/2}, {AxesOrigin -> {0, 0}}]
%t A201287 r = x /. FindRoot[f[x] == g[x], {x, .1, .2}, WorkingPrecision -> 110]
%t A201287 RealDigits[r]    (* A201287 *)
%Y A201287 Cf. A201280.
%K A201287 nonn,cons
%O A201287 0,2
%A A201287 _Clark Kimberling_, Nov 29 2011