cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A201293 Decimal expansion of x satisfying 3*x^2 + 2 = cot(x) and 0 < x < Pi.

This page as a plain text file.
%I A201293 #10 Jan 30 2025 16:03:09
%S A201293 3,8,7,4,6,7,6,2,2,7,2,7,7,7,5,3,3,3,8,3,1,1,8,8,7,7,6,4,0,1,8,8,1,2,
%T A201293 7,0,4,8,4,0,1,3,6,7,8,4,3,2,5,2,9,1,2,1,7,8,9,3,7,9,7,8,1,8,2,0,8,9,
%U A201293 0,2,4,0,1,1,0,8,9,8,0,2,8,2,9,7,1,5,4,2,9,9,7,4,0,8,6,2,4,0,9
%N A201293 Decimal expansion of x satisfying 3*x^2 + 2 = cot(x) and 0 < x < Pi.
%C A201293 See A201280 for a guide to related sequences. The Mathematica program includes a graph.
%H A201293 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>.
%e A201293 0.387467622727775333831188776401881270...
%t A201293 a = 3; c = 2;
%t A201293 f[x_] := a*x^2 + c; g[x_] := Cot[x]
%t A201293 Plot[{f[x], g[x]}, {x, 0, Pi/2}, {AxesOrigin -> {0, 0}}]
%t A201293 r = x /. FindRoot[f[x] == g[x], {x, .3, .4}, WorkingPrecision -> 110]
%t A201293 RealDigits[r]    (* A201293 *)
%Y A201293 Cf. A201280.
%K A201293 nonn,cons
%O A201293 0,1
%A A201293 _Clark Kimberling_, Nov 29 2011