cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A201299 Decimal expansion of x satisfying x^2 - 5 = cot(x) and 0 < x < Pi.

This page as a plain text file.
%I A201299 #12 Jan 30 2025 15:50:28
%S A201299 2,1,0,0,9,2,9,3,7,7,0,2,7,2,8,5,9,4,0,8,0,0,3,7,3,7,5,5,6,7,9,3,5,5,
%T A201299 5,9,3,6,3,8,9,4,5,2,6,3,7,8,9,2,3,2,7,2,8,1,6,4,9,2,6,2,0,0,3,1,1,9,
%U A201299 1,5,1,7,9,5,7,4,0,9,6,4,5,6,9,1,6,5,2,2,7,4,1,0,0,1,3,7,9,9,5,7,5,7,7
%N A201299 Decimal expansion of x satisfying x^2 - 5 = cot(x) and 0 < x < Pi.
%C A201299 See A201280 for a guide to related sequences. The Mathematica program includes a graph.
%H A201299 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>.
%e A201299 2.10092937702728594080037375567935559363...
%t A201299 a = 1; c = -5;
%t A201299 f[x_] := a*x^2 + c; g[x_] := Cot[x]
%t A201299 Plot[{f[x], g[x]}, {x, 0, Pi}, {AxesOrigin -> {0, 0}}]
%t A201299 r = x /. FindRoot[f[x] == g[x], {x, 2.0, 2.1}, WorkingPrecision -> 110]
%t A201299 RealDigits[r]   (* A201299 *)
%Y A201299 Cf. A201280.
%K A201299 nonn,cons
%O A201299 1,1
%A A201299 _Clark Kimberling_, Nov 29 2011
%E A201299 a(94) onwards corrected by _Georg Fischer_, Aug 03 2021