cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A201316 Decimal expansion of x satisfying x^2 - 7 = cot(x) and 0 < x < Pi.

This page as a plain text file.
%I A201316 #10 Jan 30 2025 15:49:33
%S A201316 2,4,2,0,9,9,4,1,9,8,6,5,6,6,9,2,6,6,4,5,0,3,7,5,7,3,3,7,4,3,9,8,7,9,
%T A201316 4,0,2,0,3,7,2,5,9,0,8,5,3,4,7,2,0,0,6,4,7,7,3,4,8,0,5,3,3,4,6,7,2,0,
%U A201316 2,6,2,1,3,0,1,4,5,7,9,7,4,7,2,2,5,9,7,9,7,8,3,8,8,4,1,8,1,0,9
%N A201316 Decimal expansion of x satisfying x^2 - 7 = cot(x) and 0 < x < Pi.
%C A201316 See A201280 for a guide to related sequences. The Mathematica program includes a graph.
%H A201316 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>.
%e A201316 2.4209941986566926645037573374398794020...
%t A201316 a = 1; c = -7;
%t A201316 f[x_] := a*x^2 + c; g[x_] := Cot[x]
%t A201316 Plot[{f[x], g[x]}, {x, 0, Pi}, {AxesOrigin -> {0, 0}}]
%t A201316 r = x /. FindRoot[f[x] == g[x], {x, 2.4, 2.5}, WorkingPrecision -> 110]
%t A201316 RealDigits[r]   (* A201316 *)
%Y A201316 Cf. A201280.
%K A201316 nonn,cons
%O A201316 1,1
%A A201316 _Clark Kimberling_, Nov 29 2011