cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A201322 Decimal expansion of x satisfying 4*x^2 - 1 = cot(x) and 0 < x < Pi.

This page as a plain text file.
%I A201322 #10 Jan 30 2025 16:00:58
%S A201322 7,2,8,2,4,6,5,3,2,3,5,5,2,8,6,1,4,2,6,5,1,8,2,0,1,9,5,7,7,8,8,3,8,8,
%T A201322 3,3,3,2,3,2,5,6,1,1,4,0,4,2,4,4,1,4,9,5,7,0,8,4,0,7,1,2,0,2,4,6,8,1,
%U A201322 5,9,5,6,3,0,7,6,8,7,0,7,1,1,1,2,1,3,0,1,1,6,7,8,5,9,1,4,2,8,6
%N A201322 Decimal expansion of x satisfying 4*x^2 - 1 = cot(x) and 0 < x < Pi.
%C A201322 See A201280 for a guide to related sequences. The Mathematica program includes a graph.
%H A201322 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>.
%e A201322 0.7282465323552861426518201957788388333...
%t A201322 a = 4; c = -1;
%t A201322 f[x_] := a*x^2 + c; g[x_] := Cot[x]
%t A201322 Plot[{f[x], g[x]}, {x, 0, Pi/2}, {AxesOrigin -> {0, 0}}]
%t A201322 r = x /. FindRoot[f[x] == g[x], {x, .7, .8}, WorkingPrecision -> 110]
%t A201322 RealDigits[r]   (* A201322 *)
%Y A201322 Cf. A201280.
%K A201322 nonn,cons
%O A201322 0,1
%A A201322 _Clark Kimberling_, Nov 30 2011