cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A201327 Decimal expansion of x satisfying 9*x^2 - 1 = cot(x) and 0 < x < Pi.

This page as a plain text file.
%I A201327 #10 Jan 30 2025 16:02:38
%S A201327 5,4,3,2,4,5,4,7,2,5,1,1,0,6,5,6,3,7,1,6,1,8,0,7,4,0,0,7,2,4,2,8,7,3,
%T A201327 5,0,6,6,4,8,7,6,2,9,5,0,9,3,4,8,9,8,1,4,5,7,8,1,9,9,4,6,1,8,9,6,6,4,
%U A201327 8,4,9,2,2,1,7,5,4,3,4,1,5,5,2,3,0,6,7,8,7,6,5,2,8,6,3,3,0,2,2
%N A201327 Decimal expansion of x satisfying 9*x^2 - 1 = cot(x) and 0 < x < Pi.
%C A201327 See A201280 for a guide to related sequences. The Mathematica program includes a graph.
%H A201327 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>.
%e A201327 0.543245472511065637161807400724287350...
%t A201327 a = 9; c = -1;
%t A201327 f[x_] := a*x^2 + c; g[x_] := Cot[x]
%t A201327 Plot[{f[x], g[x]}, {x, 0, Pi/2}, {AxesOrigin -> {0, 0}}]
%t A201327 r = x /. FindRoot[f[x] == g[x], {x, .5, .6}, WorkingPrecision -> 110]
%t A201327 RealDigits[r]   (* A201327 *)
%Y A201327 Cf. A201280.
%K A201327 nonn,cons
%O A201327 0,1
%A A201327 _Clark Kimberling_, Nov 30 2011