cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A201329 Decimal expansion of x satisfying 2*x^2 = cot(x) and 0 < x < Pi.

This page as a plain text file.
%I A201329 #10 Jan 30 2025 15:54:38
%S A201329 7,3,9,9,9,6,6,7,6,5,4,8,4,9,3,3,0,8,3,4,5,5,4,3,5,0,3,4,5,7,9,2,7,5,
%T A201329 6,8,5,3,7,8,6,6,5,8,3,1,9,2,5,3,8,4,3,0,8,3,0,5,8,4,8,3,3,0,4,9,3,7,
%U A201329 5,7,9,0,8,3,8,9,2,5,2,8,1,8,6,2,8,8,0,7,6,3,6,0,4,1,9,3,3,2,9
%N A201329 Decimal expansion of x satisfying 2*x^2 = cot(x) and 0 < x < Pi.
%C A201329 See A201280 for a guide to related sequences. The Mathematica program includes a graph.
%H A201329 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>.
%e A201329 0.73999667654849330834554350345792756853...
%t A201329 a = 2; c = 0;
%t A201329 f[x_] := a*x^2 + c; g[x_] := Cot[x]
%t A201329 Plot[{f[x], g[x]}, {x, 0, Pi/2}, {AxesOrigin -> {0, 0}}]
%t A201329 r = x /. FindRoot[f[x] == g[x], {x, .7, .8}, WorkingPrecision -> 110]
%t A201329 RealDigits[r]   (* A201329 *)
%Y A201329 Cf. A201280.
%K A201329 nonn,cons
%O A201329 0,1
%A A201329 _Clark Kimberling_, Nov 30 2011