This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A201331 #10 Nov 26 2024 14:45:11 %S A201331 6,0,2,7,3,4,2,0,3,9,9,5,6,9,3,9,9,0,3,3,0,9,2,9,2,9,1,6,5,1,1,4,3,5, %T A201331 2,1,4,0,6,1,2,6,5,9,2,6,2,5,6,5,5,0,4,6,1,7,2,5,5,0,8,9,0,9,3,1,3,2, %U A201331 8,7,4,0,9,8,0,4,6,1,2,7,1,9,6,0,0,6,7,4,3,0,3,1,1,6,0,5,2,8,1 %N A201331 Decimal expansion of x satisfying 4*x^2 = cot(x) and 0 < x < Pi. %C A201331 See A201280 for a guide to related sequences. The Mathematica program includes a graph. %H A201331 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>. %e A201331 0.60273420399569399033092929165114352.... %t A201331 a = 4; c = 0; %t A201331 f[x_] := a*x^2 + c; g[x_] := Cot[x] %t A201331 Plot[{f[x], g[x]}, {x, 0, Pi/2}, {AxesOrigin -> {0, 0}}] %t A201331 r = x /. FindRoot[f[x] == g[x], {x, .6, .7}, WorkingPrecision -> 110] %t A201331 RealDigits[r] (* A201331 *) %o A201331 (PARI) solve(x=0,1,4*x^2*tan(x)-1) \\ _Charles R Greathouse IV_, Nov 26 2024 %Y A201331 Cf. A201280. %K A201331 nonn,cons %O A201331 0,1 %A A201331 _Clark Kimberling_, Nov 30 2011