cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A201332 Decimal expansion of x satisfying 5*x^2 = cot(x) and 0 < x < Pi.

This page as a plain text file.
%I A201332 #10 Jan 30 2025 15:55:23
%S A201332 5,6,2,9,5,6,0,1,9,8,9,2,5,4,3,7,3,7,6,6,9,7,5,3,8,2,7,3,9,8,4,9,2,9,
%T A201332 5,9,2,0,2,4,2,7,5,2,4,9,8,2,1,1,9,8,5,2,3,6,5,7,4,7,8,0,5,7,1,1,3,3,
%U A201332 6,5,9,9,4,4,0,8,0,9,8,5,9,8,9,2,8,0,5,5,9,4,5,7,8,0,3,8,7,0,7
%N A201332 Decimal expansion of x satisfying 5*x^2 = cot(x) and 0 < x < Pi.
%C A201332 See A201280 for a guide to related sequences. The Mathematica program includes a graph.
%H A201332 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>.
%e A201332 0.56295601989254373766975382739849295920...
%t A201332 a = 5; c = 0;
%t A201332 f[x_] := a*x^2 + c; g[x_] := Cot[x]
%t A201332 Plot[{f[x], g[x]}, {x, 0, Pi/2}, {AxesOrigin -> {0, 0}}]
%t A201332 r = x /. FindRoot[f[x] == g[x], {x, .5, .6}, WorkingPrecision -> 110]
%t A201332 RealDigits[r]    (* A201332 *)
%Y A201332 Cf. A201280.
%K A201332 nonn,cons
%O A201332 0,1
%A A201332 _Clark Kimberling_, Nov 30 2011