cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A201333 Decimal expansion of x satisfying 6*x^2 = cot(x) and 0 < x < Pi.

This page as a plain text file.
%I A201333 #10 Jan 30 2025 15:58:34
%S A201333 5,3,2,0,7,6,2,5,1,3,5,6,6,5,0,3,1,6,8,0,0,7,3,5,2,4,8,7,0,9,5,0,8,2,
%T A201333 9,3,5,1,1,0,1,4,9,6,7,8,7,3,3,8,4,6,9,6,8,9,4,2,2,8,8,4,4,6,0,6,3,3,
%U A201333 8,0,9,9,8,8,6,4,3,3,0,5,5,9,0,1,8,3,9,2,4,8,7,1,8,1,5,3,0,4,2
%N A201333 Decimal expansion of x satisfying 6*x^2 = cot(x) and 0 < x < Pi.
%C A201333 See A201280 for a guide to related sequences. The Mathematica program includes a graph.
%H A201333 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>.
%e A201333 0.53207625135665031680073524870950829351101...
%t A201333 a = 6; c = 0;
%t A201333 f[x_] := a*x^2 + c; g[x_] := Cot[x]
%t A201333 Plot[{f[x], g[x]}, {x, 0, Pi/2}, {AxesOrigin -> {0, 0}}]
%t A201333 r = x /. FindRoot[f[x] == g[x], {x, .5, .6}, WorkingPrecision -> 110]
%t A201333 RealDigits[r]    (* A201333 *)
%Y A201333 Cf. A201280.
%K A201333 nonn,cons
%O A201333 0,1
%A A201333 _Clark Kimberling_, Nov 30 2011