cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A201335 Decimal expansion of x satisfying 8*x^2 = cot(x) and 0 < x < Pi.

This page as a plain text file.
%I A201335 #11 Jan 30 2025 15:58:10
%S A201335 4,8,6,2,7,7,9,6,7,8,2,5,0,6,5,8,6,3,3,1,3,3,8,4,3,3,0,9,6,3,3,0,0,2,
%T A201335 1,9,9,6,5,8,9,6,1,1,8,6,8,1,0,1,9,5,6,2,7,4,4,0,0,0,8,5,1,5,1,3,3,5,
%U A201335 1,1,0,7,2,8,3,3,0,6,8,7,9,1,4,9,0,7,4,7,8,0,6,9,0,0,5,3,6,3,4
%N A201335 Decimal expansion of x satisfying 8*x^2 = cot(x) and 0 < x < Pi.
%C A201335 See A201280 for a guide to related sequences. The Mathematica program includes a graph.
%H A201335 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>.
%e A201335 0.48627796782506586331338433096330021996589611...
%t A201335 a = 8; c = 0;
%t A201335 f[x_] := a*x^2 + c; g[x_] := Cot[x]
%t A201335 Plot[{f[x], g[x]}, {x, 0, Pi/2}, {AxesOrigin -> {0, 0}}]
%t A201335 r = x /. FindRoot[f[x] == g[x], {x, .4, .5}, WorkingPrecision -> 110]
%t A201335 RealDigits[r]   (* A201335 *)
%Y A201335 Cf. A201280.
%K A201335 nonn,cons
%O A201335 0,1
%A A201335 _Clark Kimberling_, Nov 30 2011