cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A201337 Decimal expansion of x satisfying 10*x^2 = cot(x) and 0 < x < Pi.

This page as a plain text file.
%I A201337 #10 Jan 30 2025 15:57:40
%S A201337 4,5,3,1,6,1,6,5,6,7,7,2,4,2,4,5,8,7,6,8,9,0,6,0,6,0,1,7,6,7,4,2,7,0,
%T A201337 6,7,8,2,0,4,3,7,5,9,7,0,7,1,5,5,4,2,2,8,6,5,2,2,3,5,1,8,5,8,4,7,5,8,
%U A201337 2,0,9,1,5,2,6,9,0,7,5,7,4,4,4,3,5,2,4,8,8,4,2,4,0,0,8,6,3,4,8
%N A201337 Decimal expansion of x satisfying 10*x^2 = cot(x) and 0 < x < Pi.
%C A201337 See A201280 for a guide to related sequences. The Mathematica program includes a graph.
%H A201337 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>.
%e A201337 0.45316165677242458768906060176742706782043759...
%t A201337 a = 10; c = 0;
%t A201337 f[x_] := a*x^2 + c; g[x_] := Cot[x]
%t A201337 Plot[{f[x], g[x]}, {x, 0, Pi/2}, {AxesOrigin -> {0, 0}}]
%t A201337 r = x /. FindRoot[f[x] == g[x], {x, .4, .5}, WorkingPrecision -> 110]
%t A201337 RealDigits[r]    (* A201337 *)
%Y A201337 Cf. A201280.
%K A201337 nonn,cons
%O A201337 0,1
%A A201337 _Clark Kimberling_, Nov 30 2011