A201371 Number of n X 4 0..1 arrays with rows and columns lexicographically nondecreasing read forwards, and nonincreasing read backwards.
2, 5, 14, 36, 80, 157, 280, 464, 726, 1085, 1562, 2180, 2964, 3941, 5140, 6592, 8330, 10389, 12806, 15620, 18872, 22605, 26864, 31696, 37150, 43277, 50130, 57764, 66236, 75605, 85932, 97280, 109714, 123301, 138110, 154212, 171680, 190589, 211016
Offset: 1
Keywords
Examples
Some solutions for n=5: ..0..0..1..1....0..0..1..1....0..1..1..1....0..1..1..1....0..0..0..1 ..0..0..1..1....0..0..1..1....1..0..1..1....0..1..1..1....0..0..0..1 ..1..1..0..1....0..1..0..1....1..1..0..0....1..0..0..1....0..0..0..1 ..1..1..1..0....0..1..1..0....1..1..0..0....1..1..1..0....0..0..1..0 ..1..1..1..0....1..0..0..0....1..1..0..0....1..1..1..0....1..1..0..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A201375.
Formula
Empirical: a(n) = (1/12)*n^4 + (1/3)*n^3 - (13/12)*n^2 + (8/3)*n.
Conjectures from Colin Barker, May 22 2018: (Start)
G.f.: x*(2 - 5*x + 9*x^2 - 4*x^3) / (1 - x)^5.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) for n>5.
(End)
Comments